
Distributional Semantic Models
Tutorial at NAACL-HLT 2010, Los Angeles, CA

— part 1 —

Stefan Evert1
with contributions from Marco Baroni2 and Alessandro Lenci3

1University of Osnabrück, Germany

2University of Trento, Italy

3University of Pisa, Italy

Los Angeles, 1 June 2010
Copyright © 2009–2010 Baroni, Evert & Lenci | Licensed under CC-by-sa version 3.0

© Evert/Baroni/Lenci (CC-by-sa) DSM Tutorial wordspace.collocations.de 1 / 107

Outline

Outline

Introduction
The distributional hypothesis
General overview
Three famous DSM examples

Taxonomy of DSM parameters
Definition & overview
DSM parameters
Examples

Usage and evaluation of DSM
What to do with DSM distances
Evaluation: semantic similarity and relatedness
Attributional similarity
Relational similarity

© Evert/Baroni/Lenci (CC-by-sa) DSM Tutorial wordspace.collocations.de 2 / 107

Introduction The distributional hypothesis

Outline

Introduction
The distributional hypothesis
General overview
Three famous DSM examples

Taxonomy of DSM parameters
Definition & overview
DSM parameters
Examples

Usage and evaluation of DSM
What to do with DSM distances
Evaluation: semantic similarity and relatedness
Attributional similarity
Relational similarity

© Evert/Baroni/Lenci (CC-by-sa) DSM Tutorial wordspace.collocations.de 3 / 107

Introduction The distributional hypothesis

Meaning & distribution

I “Die Bedeutung eines Wortes liegt in seinem Gebrauch.”
— Ludwig Wittgenstein

I “You shall know a word by the company it keeps!”
— J. R. Firth (1957)

I Distributional hypothesis (Zellig Harris 1954)
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Introduction The distributional hypothesis

What is the meaning of “bardiwac”?

I He handed her her glass of bardiwac.
I Beef dishes are made to complement the bardiwacs.
I Nigel staggered to his feet, face flushed from too much

bardiwac.
I Malbec, one of the lesser-known bardiwac grapes, responds

well to Australia’s sunshine.
I I dined off bread and cheese and this excellent bardiwac.
I The drinks were delicious: blood-red bardiwac as well as light,

sweet Rhenish.
+ bardiwac is a heavy red alcoholic beverage made from grapes
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Introduction The distributional hypothesis

Real-life concordance & word sketch
http://beta.sketchengine.co.uk/
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Real-life concordance & word sketch
http://beta.sketchengine.co.uk/
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Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

get sij ius hir iit kil
(knife) naif 51 20 84 0 3 0
(cat) ket 52 58 4 4 6 26
??? dog 115 83 10 42 33 17
(boat) beut 59 39 23 4 0 0
(cup) kap 98 14 6 2 1 0
(pig) pigij 12 17 3 2 9 27
(banana) nana 11 2 2 0 18 0
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Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

get sij ius hir iit kil
(knife) naif 51 20 84 0 3 0
(cat) ket 52 58 4 4 6 26
??? dog 115 83 10 42 33 17
(boat) beut 59 39 23 4 0 0
(cup) kap 98 14 6 2 1 0
(pig) pigij 12 17 3 2 9 27
(banana) nana 11 2 2 0 18 0

sim(dog, naif) = 0.770
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Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

get sij ius hir iit kil
(knife) naif 51 20 84 0 3 0
(cat) ket 52 58 4 4 6 26
??? dog 115 83 10 42 33 17
(boat) beut 59 39 23 4 0 0
(cup) kap 98 14 6 2 1 0
(pig) pigij 12 17 3 2 9 27
(banana) nana 11 2 2 0 18 0

sim(dog, pigij) = 0.939
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Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

get sij ius hir iit kil
(knife) naif 51 20 84 0 3 0
(cat) ket 52 58 4 4 6 26
??? dog 115 83 10 42 33 17
(boat) beut 59 39 23 4 0 0
(cup) kap 98 14 6 2 1 0
(pig) pigij 12 17 3 2 9 27
(banana) nana 11 2 2 0 18 0

sim(dog, ket) = 0.961
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Introduction The distributional hypothesis

English as seen by the computer . . .

get see use hear eat kill
get sij ius hir iit kil

knife naif 51 20 84 0 3 0
cat ket 52 58 4 4 6 26
dog dog 115 83 10 42 33 17
boat beut 59 39 23 4 0 0
cup kap 98 14 6 2 1 0
pig pigij 12 17 3 2 9 27
banana nana 11 2 2 0 18 0

verb-object counts from British National Corpus
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Introduction The distributional hypothesis

Geometric interpretation

I row vector xdog
describes usage of
word dog in the
corpus

I can be seen as
coordinates of point
in n-dimensional
Euclidean space

get see use hear eat kill
knife 51 20 84 0 3 0
cat 52 58 4 4 6 26
dog 115 83 10 42 33 17
boat 59 39 23 4 0 0
cup 98 14 6 2 1 0
pig 12 17 3 2 9 27

banana 11 2 2 0 18 0

co-occurrence matrix M
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Introduction The distributional hypothesis

Geometric interpretation

I row vector xdog
describes usage of
word dog in the
corpus

I can be seen as
coordinates of point
in n-dimensional
Euclidean space

I illustrated for two
dimensions:
get and use

I xdog = (115, 10) ●
●

●

●

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Two dimensions of English V−Obj DSM

get

us
e

cat
dog

knife

boat

© Evert/Baroni/Lenci (CC-by-sa) DSM Tutorial wordspace.collocations.de 11 / 107

Introduction The distributional hypothesis

Geometric interpretation

I similarity = spatial
proximity
(Euclidean dist.)

I location depends on
frequency of noun
(fdog ≈ 2.7 · fcat)
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Introduction The distributional hypothesis

Geometric interpretation

I similarity = spatial
proximity
(Euclidean dist.)

I location depends on
frequency of noun
(fdog ≈ 2.7 · fcat)

I direction more
important than
location
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Introduction The distributional hypothesis

Geometric interpretation

I similarity = spatial
proximity
(Euclidean dist.)

I location depends on
frequency of noun
(fdog ≈ 2.7 · fcat)

I direction more
important than
location

I normalise “length”
‖xdog‖ of vector

I or use angle α as
distance measure
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Introduction The distributional hypothesis

Semantic distances

I main result of distributional
analysis are “semantic”
distances between words

I typical applications
I nearest neighbours
I clustering of related words
I construct semantic map
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Introduction General overview

Tutorial overview

1. Introduction & examples
2. Taxonomy of DSM parameters
3. Usage and evaluation of DSM spaces
4. Elements of matrix algebra
5. Making sense of DSM
6. Current research topics & future directions

Realistically, we’ll get through parts 1–3 today. But you can find out about
matrix algebra and the other advanced topics in the handouts available from
the course Web site.
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Introduction General overview

Further information

I Handouts & other materials vailable from homepage at
http://wordspace.collocations.de/

+ will be extended during the next few months
I Tutorial is open source (CC), and can be downloaded from

http://r-forge.r-project.org/projects/wordspace/

I Compact DSM textbook in preparation for Synthesis Lectures
on Human Language Technologies (Morgan & Claypool)

This tutorial is based on joint work with
Marco Baroni and Alessandro Lenci
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Introduction General overview

A very brief history of DSM

I Introduced to computational linguistics in early 1990s
following the probabilistic revolution (Schütze 1992, 1998)

I Other early work in psychology (Landauer and Dumais 1997;
Lund and Burgess 1996)

+ influenced by Latent Semantic Indexing (Dumais et al. 1988)
and efficient software implementations (Berry 1992)

I Renewed interest in recent years
I 2007: CoSMo Workshop (at Context ’07)
I 2008: ESSLLI Lexical Semantics Workshop & Shared Task,

Special Issue of the Italian Journal of Linguistics
I 2009: GeMS Workshop (EACL 2009), DiSCo Workshop

(CogSci 2009), ESSLLI Advanced Course on DSM
I 2010: 2nd GeMS Workshop (ACL 2010), ESSLLI Workhsop on

Compositionality & DSM, Special Issue of JNLE (in prep.),
Computational Neurolinguistics Workshop (NAACL-HLT 2010
— don’t miss it this Sunday!)
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Introduction General overview

Some applications in computational linguistics

I Unsupervised part-of-speech induction (Schütze 1995)
I Word sense disambiguation (Schütze 1998)
I Query expansion in information retrieval (Grefenstette 1994)
I Synonym tasks & other language tests

(Landauer and Dumais 1997; Turney et al. 2003)
I Thesaurus compilation (Lin 1998a; Rapp 2004)
I Ontology & wordnet expansion (Pantel et al. 2009)
I Attachment disambiguation (Pantel 2000)
I Probabilistic language models (Bengio et al. 2003)
I Subsymbolic input representation for neural networks
I Many other tasks in computational semantics:

entailment detection, noun compound interpretation,
identification of noncompositional expressions, . . .
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Introduction Three famous DSM examples

Latent Semantic Analysis (Landauer and Dumais 1997)

I Corpus: 30,473 articles from Grolier’s Academic American
Encyclopedia (4.6 million words in total)

+ articles were limited to first 2,000 characters
I Word-article frequency matrix for 60,768 words

I row vector shows frequency of word in each article
I Logarithmic frequencies scaled by word entropy
I Reduced to 300 dim. by singular value decomposition (SVD)

I borrowed from LSI (Dumais et al. 1988)
+ central claim: SVD reveals latent semantic features,

not just a data reduction technique
I Evaluated on TOEFL synonym test (80 items)

I LSA model achieved 64.4% correct answers
I also simulation of learning rate based on TOEFL results
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Introduction Three famous DSM examples

Word Space (Schütze 1992, 1993, 1998)

I Corpus: ≈ 60 million words of news messages (New York
Times News Service)

I Word-word co-occurrence matrix
I 20,000 target words & 2,000 context words as features
I row vector records how often each context word occurs close

to the target word (co-occurrence)
I co-occurrence window: left/right 50 words (Schütze 1998)

or ≈ 1000 characters (Schütze 1992)
I Rows weighted by inverse document frequency (tf.idf)
I Context vector = centroid of word vectors (bag-of-words)

+ goal: determine “meaning” of a context
I Reduced to 100 SVD dimensions (mainly for efficiency)
I Evaluated on unsupervised word sense induction by clustering

of context vectors (for an ambiguous word)
I induced word senses improve information retrieval performance
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Introduction Three famous DSM examples

HAL (Lund and Burgess 1996)

I HAL = Hyperspace Analogue to Language
I Corpus: 160 million words from newsgroup postings
I Word-word co-occurrence matrix

I same 70,000 words used as targets and features
I co-occurrence window of 1 – 10 words

I Separate counts for left and right co-occurrence
I i.e. the context is structured

I In later work, co-occurrences are weighted by (inverse)
distance (Li et al. 2000)

I Applications include construction of semantic vocabulary
maps by multidimensional scaling to 2 dimensions
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Introduction Three famous DSM examples

Many parameters . . .

I Enormous range of DSM parameters and applications
I Examples showed three entirely different models, each tuned

to its particular application
å Need overview of DSM parameters & understand their effects
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Taxonomy of DSM parameters Definition & overview

General definition of DSMs

A distributional semantic model (DSM) is a scaled and/or
transformed co-occurrence matrix M, such that each row x
represents the distribution of a target term across contexts.

get see use hear eat kill
knife 0.027 -0.024 0.206 -0.022 -0.044 -0.042
cat 0.031 0.143 -0.243 -0.015 -0.009 0.131
dog -0.026 0.021 -0.212 0.064 0.013 0.014
boat -0.022 0.009 -0.044 -0.040 -0.074 -0.042
cup -0.014 -0.173 -0.249 -0.099 -0.119 -0.042
pig -0.069 0.094 -0.158 0.000 0.094 0.265

banana 0.047 -0.139 -0.104 -0.022 0.267 -0.042

Term = word, lemma, phrase, morpheme, . . .
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Taxonomy of DSM parameters Definition & overview

General definition of DSMs

Mathematical notation:
I m × n co-occurrence matrix M (example: 7× 6 matrix)

I m rows = target terms
I n columns = features or dimensions

M =


x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
...

xm1 xm2 · · · xmn


I distribution vector xi = i-th row of M, e.g. x3 = xdog
I components xi = (xi1, xi2, . . . , xin) = features of i-th term:

x3 = (−0.026, 0.021,−0.212, 0.064, 0.013, 0.014)
= (x31, x32, x33, x34, x35, x36)
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Taxonomy of DSM parameters Definition & overview

Overview of DSM parameters

Linguistic pre-processing (definition of terms)
⇓

Term-context vs. term-term matrix
⇓

Size & type of context / structured vs. unstructered
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Compression
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Taxonomy of DSM parameters DSM parameters

Corpus pre-processing

I Minimally, corpus must be tokenised Ü identify terms
I Linguistic annotation

I part-of-speech tagging
I lemmatisation / stemming
I word sense disambiguation (rare)
I shallow syntactic patterns
I dependency parsing

I Generalisation of terms
I often lemmatised to reduce data sparseness:

go, goes, went, gone, going Ü go
I POS disambiguation (light/N vs. light/A vs. light/V)
I word sense disambiguation (bankriver vs. bankfinance)

I Trade-off between deeper linguistic analysis and
I need for language-specific resources
I possible errors introduced at each stage of the analysis
I even more parameters to optimise / cognitive plausibility
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Taxonomy of DSM parameters DSM parameters

Effects of pre-processing

Nearest neighbours of walk (BNC)

word forms
I stroll
I walking
I walked
I go
I path
I drive
I ride
I wander
I sprinted
I sauntered

lemmatised corpus

I hurry
I stroll
I stride
I trudge
I amble
I wander
I walk-nn
I walking
I retrace
I scuttle
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Taxonomy of DSM parameters DSM parameters

Effects of pre-processing

Nearest neighbours of arrivare (Repubblica)

word forms
I giungere
I raggiungere
I arrivi
I raggiungimento
I raggiunto
I trovare
I raggiunge
I arrivasse
I arriverà
I concludere

lemmatised corpus

I giungere
I aspettare
I attendere
I arrivo-nn
I ricevere
I accontentare
I approdare
I pervenire
I venire
I piombare
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Taxonomy of DSM parameters DSM parameters

Overview of DSM parameters

Linguistic pre-processing (definition of terms)
⇓

Term-context vs. term-term matrix
⇓

Size & type of context / structured vs. unstructered
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Compression
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Taxonomy of DSM parameters DSM parameters

Term-context vs. term-term matrix

Term-context matrix records frequency of term in each individual
context (typically a sentence or document)

doc1 doc2 doc3 · · ·
boat 1 3 0 · · ·
cat 0 0 2 · · ·
dog 1 0 1 · · ·

I Typical contexts are non-overlapping textual units (Web page,
encyclopaedia article, paragraph, sentence, . . . )

I Contexts can also be generalised, e.g.
I bag of content words
I specific pattern of POS tags
I subcategorisation pattern of target verb

I Term-context matrix is usually very sparse
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Taxonomy of DSM parameters DSM parameters

Term-context vs. term-term matrix

Term-term matrix records co-occurrence frequencies of context
terms for each target term (often target terms 6= context terms)

see use hear · · ·
boat 39 23 4 · · ·
cat 58 4 4 · · ·
dog 83 10 42 · · ·

I Different types of contexts (Evert 2008)
I surface context (word or character window)
I textual context (non-overlapping segments)
I syntactic contxt (specific syntagmatic relation)

I Can be seen as smoothing of term-context matrix
I average over similar contexts (with same context terms)
I data sparseness reduced, except for small windows
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Taxonomy of DSM parameters DSM parameters

Overview of DSM parameters

Linguistic pre-processing (definition of terms)
⇓

Term-context vs. term-term matrix
⇓

Size & type of context / structured vs. unstructered
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Compression
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Taxonomy of DSM parameters DSM parameters

Surface context

Context term occurs within a window of k words around target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
I window size (in words or characters)
I symmetric vs. one-sided window
I uniform or “triangular” (distance-based) weighting
I window clamped to sentences or other textual units?
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Taxonomy of DSM parameters DSM parameters

Effect of different window sizes

Nearest neighbours of dog (BNC)

2-word window
I cat
I horse
I fox
I pet
I rabbit
I pig
I animal
I mongrel
I sheep
I pigeon

30-word window
I kennel
I puppy
I pet
I bitch
I terrier
I rottweiler
I canine
I cat
I to bark
I Alsatian
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Taxonomy of DSM parameters DSM parameters

Textual context

Context term is in the same linguistic unit as target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
I type of linguistic unit

I sentence
I paragraph
I turn in a conversation
I Web page
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Taxonomy of DSM parameters DSM parameters

Syntactic context

Context term is linked to target by a syntactic dependency
(e.g. subject, modifier, . . . ).

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
I types of syntactic dependency (Padó and Lapata 2007)
I direct vs. indirect dependency paths

I direct dependencies
I direct + indirect dependencies

I homogeneous data (e.g. only verb-object) vs.
heterogeneous data (e.g. all children and parents of the verb)

I maximal length of dependency path
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Taxonomy of DSM parameters DSM parameters

“Knowledge pattern” context

Context term is linked to target by a lexico-syntactic pattern
(text mining, cf. Hearst 1992, Pantel & Pennacchiotti 2008, etc.).

In Provence, Van Gogh painted with bright colors such as red and
yellow. These colors produce incredible effects on anybody looking
at his paintings.

Parameters:
I inventory of lexical patterns

I lots of research to identify semantically interesting patterns
(cf. Almuhareb & Poesio 2004, Veale & Hao 2008, etc.)

I fixed vs. flexible patterns
I patterns are mined from large corpora and automatically

generalised (optional elements, POS tags or semantic classes)
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Structured vs. unstructured context

I In unstructered models, context specification acts as a filter
I determines whether context tokens counts as co-occurrence
I e.g. linked by specific syntactic relation such as verb-object

I In structured models, context words are subtyped
I depending on their position in the context
I e.g. left vs. right context, type of syntactic relation, etc.
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Taxonomy of DSM parameters DSM parameters

Structured vs. unstructured surface context

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

unstructured bite
dog 4
man 3

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

structured bite-l bite-r
dog 3 1
man 1 2
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Taxonomy of DSM parameters DSM parameters

Structured vs. unstructured dependency context

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

unstructured bite
dog 4
man 2

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

structured bite-subj bite-obj
dog 3 1
man 0 2
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Taxonomy of DSM parameters DSM parameters

Comparison

I Unstructured context
I data less sparse (e.g. man kills and kills man both map to the

kill dimension of the vector xman)

I Structured context
I more sensitive to semantic distinctions

(kill-subj and kill-obj are rather different things!)
I dependency relations provide a form of syntactic “typing” of

the DSM dimensions (the “subject” dimensions, the
“recipient” dimensions, etc.)

I important to account for word-order and compositionality
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Taxonomy of DSM parameters DSM parameters

Overview of DSM parameters

Linguistic pre-processing (definition of terms)
⇓

Term-context vs. term-term matrix
⇓

Size & type of context / structured vs. unstructered
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Compression
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Taxonomy of DSM parameters DSM parameters

Geometric vs. probabilistic interpretation

I Geometric interpretation
I row vectors as points or arrows in n-dim. space
I very intuitive, good for visualisation
I use techniques from geometry and linear algebra

I Probabilistic interpretation
I co-occurrence matrix as observed sample statistic
I “explained” by generative probabilistic model
I recent work focuses on hierarchical Bayesian models
I probabilistic LSA (Hoffmann 1999), Latent Semantic

Clustering (Rooth et al. 1999), Latent Dirichlet Allocation
(Blei et al. 2003), etc.

I explicitly accounts for random variation of frequency counts
I intuitive and plausible as topic model

+ focus exclusively on geometric interpretation in this tutorial
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Taxonomy of DSM parameters DSM parameters

Overview of DSM parameters

Linguistic pre-processing (definition of terms)
⇓

Term-context vs. term-term matrix
⇓

Size & type of context / structured vs. unstructered
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Compression
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Taxonomy of DSM parameters DSM parameters

Feature scaling

Feature scaling is used to “discount” less important features:
I Logarithmic scaling: x ′ = log(x + 1)

(cf. Weber-Fechner law for human perception)
I Relevance weighting, e.g. tf.idf (information retrieval)
I Statistical association measures (Evert 2004, 2008) take

frequency of target word and context feature into account
I the less frequent the target word and (more importantly) the

context feature are, the higher the weight given to their
observed co-occurrence count should be (because their
expected chance co-occurrence frequency is low)

I different measures – e.g., mutual information, log-likelihood
ratio – differ in how they balance observed and expected
co-occurrence frequencies

© Evert/Baroni/Lenci (CC-by-sa) DSM Tutorial wordspace.collocations.de 50 / 107

Taxonomy of DSM parameters DSM parameters

Association measures: Mutual Information (MI)

word1 word2 fobs f1 f2
dog small 855 33,338 490,580
dog domesticated 29 33,338 918

Expected co-occurrence frequency:

fexp =
f1 · f2
N

Mutual Information compares observed vs. expected frequency:

MI(w1,w2) = log2
fobs
fexp

= log2
N · fobs
f1 · f2

Disadvantage: MI overrates combinations of rare terms.
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Other association measures

Log-likelihood ratio (Dunning 1993) has more complex form, but
its “core” is known as local MI (Evert 2004).

local-MI(w1,w2) = fobs ·MI(w1,w2)

word1 word2 fobs MI local-MI
dog small 855 3.96 3382.87
dog domesticated 29 6.85 198.76
dog sgjkj 1 10.31 10.31

The t-score measure (Church and Hanks 1990) is popular in
lexicography:

t-score(w1,w2) =
fobs − fexp√

fobs
Details & many more measures: http://www.collocations.de/
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Taxonomy of DSM parameters DSM parameters

Overview of DSM parameters

Linguistic pre-processing (definition of terms)
⇓

Term-context vs. term-term matrix
⇓

Size & type of context / structured vs. unstructered
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Compression
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Taxonomy of DSM parameters DSM parameters

Normalisation of row vectors

I geometric distances only
make sense if vectors are
normalised to unit length

I divide vector by its length:

x/‖x‖
I normalisation depends on

distance measure!
I special case: scale to

relative frequencies with
‖x‖1 = |x1|+ · · ·+ |xn|
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Scaling of column vectors

I In statistical analysis and machine learning, features are
usually centred and scaled so that

mean µ = 0
variance σ2 = 1

I In DSM research, this step is less common for columns of M
I centring is a prerequisite for certain dimensionality reduction

and data analysis techniques (esp. PCA)
I scaling may give too much weight to rare features

I M cannot be row-normalised and column-scaled at the same
time (result depends on ordering of the two steps)
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Taxonomy of DSM parameters DSM parameters

Overview of DSM parameters

Linguistic pre-processing (definition of terms)
⇓

Term-context vs. term-term matrix
⇓

Size & type of context / structured vs. unstructered
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Compression
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Geometric distance

I Distance between vectors
u, v ∈ Rn Ü (dis)similarity

I u = (u1, . . . , un)
I v = (v1, . . . , vn)

I Euclidean distance d2 (u, v)
I “City block” Manhattan

distance d1 (u, v)
I Both are special cases of the

Minkowski p-distance dp (u, v)
(for p ∈ [1,∞])

x1

v

x2

1 2 3 4 5

1

2

3

4

5

6

6 u

d2 (!u,!v) = 3.6

d1 (!u,!v) = 5

dp (u, v) :=
(|u1 − v1|p + · · ·+ |un − vn|p

)1/p
d∞ (u, v) = max

{|u1 − v1|, . . . , |un − vn|
}
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Other distance measures

I Information theory: Kullback-Leibler (KL) divergence for
probability vectors (non-negative, ‖x‖1 = 1)

D(u‖v) =
n∑

i=1
ui · log2

ui
vi

I Properties of KL divergence
I most appropriate in a probabilistic interpretation of M
I not symmetric, unlike all other measures
I alternatives: skew divergence, Jensen-Shannon divergence
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Taxonomy of DSM parameters DSM parameters

Similarity measures

I angle α between two
vectors u, v is given by

cosα =

∑n
i=1 ui · vi√∑

i u2i ·
√∑

i v2i

=
〈u, v〉

‖u‖2 · ‖v‖2
I cosine measure of

similarity: cosα
I cosα = 1 Ü collinear
I cosα = 0 Ü orthogonal

●
●

●

●

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Two dimensions of English V−Obj DSM

get

us
e

cat
dog

knife

boat

●●

●

●

α = 54.3°

© Evert/Baroni/Lenci (CC-by-sa) DSM Tutorial wordspace.collocations.de 59 / 107
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Overview of DSM parameters

Linguistic pre-processing (definition of terms)
⇓

Term-context vs. term-term matrix
⇓

Size & type of context / structured vs. unstructered
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Compression
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Model compression = dimensionality reduction

I Co-occurrence matrix M is often unmanageably large
and can be extremely sparse

I Google Web1T5: 1M × 1M matrix with one trillion cells, of
which less than 0.05% contain nonzero counts (Evert 2010)

å Compress matrix by reducing dimensionality (= rows)

I Feature selection: columns with high frequency & variance
I measured by entropy, chi-squared test, . . .
I may select correlated (Ü uninformative) dimensions
I joint selection of multiple features is expensive

I Projection into (linear) subspace
I principal component analysis (PCA)
I independent component analysis (ICA)
I random indexing (RI)

+ intuition: preserve distances between data points
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Dimensionality reduction & latent dimensions

Landauer and Dumais (1997) claim that LSA dimensionality
reduction (and related PCA technique) uncovers latent
dimensions by exploiting correlations between features.

I Example: term-term matrix
I V-Obj cooc’s extracted from BNC

I targets = noun lemmas
I features = verb lemmas

I feature scaling: association scores
(modified log Dice coefficient)

I k = 111 nouns with f ≥ 20
(must have non-zero row vectors)

I n = 2 dimensions: buy and sell

noun buy sell
bond 0.28 0.77
cigarette -0.52 0.44
dress 0.51 -1.30
freehold -0.01 -0.08
land 1.13 1.54
number -1.05 -1.02
per -0.35 -0.16
pub -0.08 -1.30
share 1.92 1.99
system -1.63 -0.70
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Dimensionality reduction & latent dimensions
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Motivating latent dimensions & subspace projection

I The latent property of being a commodity is “expressed”
through associations with several verbs: sell, buy, acquire, . . .

I Consequence: these DSM dimensions will be correlated

I Identify latent dimension by looking for strong correlations
(or weaker correlations between large sets of features)

I Projection into subspace V of k < n latent dimensions
as a “noise reduction” technique Ü LSA

I Assumptions of this approach:
I “latent” distances in V are semantically meaningful
I other “residual” dimensions represent chance co-occurrence

patterns, often particular to the corpus underlying the DSM
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The latent “commodity” dimension
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Taxonomy of DSM parameters Examples

Outline

Introduction
The distributional hypothesis
General overview
Three famous DSM examples

Taxonomy of DSM parameters
Definition & overview
DSM parameters
Examples

Usage and evaluation of DSM
What to do with DSM distances
Evaluation: semantic similarity and relatedness
Attributional similarity
Relational similarity
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Taxonomy of DSM parameters Examples

Some well-known DSM examples
Latent Semantic Analysis (Landauer and Dumais 1997)

I term-context matrix with document context
I weighting: log term frequency and term entropy
I distance measure: cosine
I compression: SVD

Hyperspace Analogue to Language (Lund and Burgess 1996)

I term-term matrix with surface context
I structured (left/right) and distance-weighted frequency counts
I distance measure: Minkowski metric (1 ≤ p ≤ 2)
I compression: feature selection (high variance)
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Taxonomy of DSM parameters Examples

Some well-known DSM examples
Infomap NLP (Widdows 2004)

I term-term matrix with unstructured surface context
I weighting: none
I distance measure: cosine
I compression: SVD

Random Indexing (Karlgren & Sahlgren 2001)

I term-term matrix with unstructured surface context
I weighting: various methods
I distance measure: various methods
I compression: random indexing (RI)
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Taxonomy of DSM parameters Examples

Some well-known DSM examples
Dependency Vectors (Padó and Lapata 2007)

I term-term matrix with unstructured dependency context
I weighting: log-likelihood ratio
I distance measure: information-theoretic (Lin 1998b)
I compression: none

Distributional Memory (Baroni & Lenci 2009)

I both term-context and term-term matrices
I context: structured dependency context
I weighting: local-MI association measure
I distance measure: cosine
I compression: none
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Usage and evaluation of DSM What to do with DSM distances
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Usage and evaluation of DSM What to do with DSM distances

Nearest neighbours
DSM based on verb-object relations from BNC, reduced to 100 dim. with SVD

Neighbours of dog (cosine angle):
+ girl (45.5), boy (46.7), horse(47.0), wife (48.8), baby (51.9),

daughter (53.1), side (54.9), mother (55.6), boat (55.7), rest
(56.3), night (56.7), cat (56.8), son (57.0), man (58.2), place
(58.4), husband (58.5), thing (58.8), friend (59.6), . . .

Neighbours of school:
+ country (49.3), church (52.1), hospital (53.1), house (54.4),

hotel (55.1), industry (57.0), company (57.0), home (57.7),
family (58.4), university (59.0), party (59.4), group (59.5),
building (59.8), market (60.3), bank (60.4), business (60.9),
area (61.4), department (61.6), club (62.7), town (63.3),
library (63.3), room (63.6), service (64.4), police (64.7), . . .
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Usage and evaluation of DSM What to do with DSM distances

Nearest neighbours
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Clustering
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Semantic maps
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Latent dimensions
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Semantic similarity graph (topological structure)
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Distributional similarity as semantic similarity

I DSMs interpret semantic similarity as a quantitative notion
I if a is closer to b than to c in the distributional vector space,

then a is more semantically similar to b than to c

rhino fall rock
woodpecker rise lava
rhinoceros increase sand
swan fluctuation boulder
whale drop ice
ivory decrease jazz
plover reduction slab
elephant logarithm cliff
bear decline pop
satin cut basalt
sweatshirt hike crevice
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Types of semantic relations in DSMs

I Neighbors in DSMs have different types of semantic relations
car (InfomapNLP on BNC; n = 2)

I van co-hyponym
I vehicle hyperonym
I truck co-hyponym
I motorcycle co-hyponym
I driver related entity
I motor part
I lorry co-hyponym
I motorist related entity
I cavalier hyponym
I bike co-hyponym

car (InfomapNLP on BNC; n = 30)

I drive function
I park typical action
I bonnet part
I windscreen part
I hatchback part
I headlight part
I jaguar hyponym
I garage location
I cavalier hyponym
I tyre part
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Semantic similarity and relatedness

I Semantic similarity - two words sharing a high number of
salient features (attributes)

I synonymy (car/automobile)
I hyperonymy (car/vehicle)
I co-hyponymy (car/van/truck)

I Semantic relatedness (Budanitsky & Hirst 2006) - two words
semantically associated without being necessarily similar

I function (car/drive)
I meronymy (car/tyre)
I location (car/road)
I attribute (car/fast)
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DSMs and semantic similarity

I These models emphasize paradigmatic similarity
I words that tend to occur in the same contexts

I Words that share many contexts will correspond to concepts
that share many attributes (attributional similarity), i.e.
concepts that are taxonomically/ontologically similar

I synonyms (rhino/rhinoceros)
I antonyms and values on a scale (good/bad)
I co-hyponyms (rock/jazz)
I hyper- and hyponyms (rock/basalt)

I Taxonomic similarity is seen as the fundamental semantic
relation, allowing categorization, generalization, inheritance
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Evaluation of attributional similarity

I Synonym identification
I TOEFL test

I Modeling semantic similarity judgments
I the Rubenstein/Goodenough norms

I Noun categorization
I the ESSLLI 2008 dataset

I Semantic priming
I the Hodgson dataset
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The TOEFL synonym task

I The TOEFL dataset
I 80 items
I Target: levied

Candidates: imposed, believed, requested, correlated

I DSMs and TOEFL
1. take vectors of the target (t) and of the candidates (c1 . . . cn)
2. measure the distance between t and ci , with 1 ≤ i ≤ n
3. select ci with the shortest distance in space from t
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Human performance on the synonym match task

I Average foreign test taker: 64.5%
I Macquarie University staff (Rapp 2004):

I Average of 5 non-natives: 86.75%
I Average of 5 natives: 97.75%
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DSMs take the TOEFL

I Humans
I Foreign test takers: 64.5%
I Macquarie non-natives: 86.75%
I Macquarie natives: 97.75%

I Machines
I Classic LSA: 64.4%
I Padó and Lapata’s dependency-based model: 73%
I Rapp’s 2003 SVD-based model trained on lemmatized BNC:

92.5%
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Semantic similarity judgments

Dataset Rubenstein and Goodenough (1965) (R&G) of
65 noun pairs rated by 51 subjects on a 0-4 scale

car automobile 3.9
food fruit 2.7
cord smile 0.0

I DSMs vs. Rubenstein & Goodenough
1. for each test pair (w1,w2), take vectors w1 and w2
2. measure the distance (e.g. cosine) between w1 and w2
3. measure (Pearson) correlation between vector distances and

R&G average judgments (Padó and Lapata 2007)

model r
dep-filtered+SVD 0.8
dep-filtered 0.7
dep-linked (DM) 0.64
window 0.63
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Categorization

I In categorization tasks, subjects are typically asked to assign
experimental items – objects, images, words – to a given
category or group items belonging to the same category

I categorization requires an understanding of the relationship
between the items in a category

I Categorization is a basic cognitive operation presupposed by
further semantic tasks

I inference
F if X is a CAR then X is a VEHICLE

I compositionality
F λy : FOOD λx : ANIMATE; eat(x , y)

I “Chicken-and-egg” problem for relationship of categorization
and similarity (cf. Goodman 1972, Medin et al. 1993)
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Noun categorization

Dataset 44 concrete nouns (ESSLLI 2008 Shared Task)
I 24 natural entities

I 15 animals:
7 birds (eagle), 8 ground animals (lion)

I 9 plants: 4 fruits (banana), 5 greens (onion)
I 20 artifacts

I 13 tools (hammer), 7 vehicles (car)

I DSMs and noun categorization
I categorization can be operationalized as a clustering task

1. for each noun wi in the dataset, take its vector wi
2. use a clustering method to group close vectors wi
3. evaluate whether clusters correspond to gold-standard

semantic classes (purity, entropy, . . . )
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Noun categorization

I Clustering experiments with CLUTO (Karypis 2003)
I repeated bisection algorithm
I 6-way (birds, ground animals, fruits, greens, tools and

vehicles), 3-way (animals, plants and artifacts) and 2-way
(natural and artificial entities) clusterings

I Clusters evaluation
I entropy – whether words from different classes are represented

in the same cluster (best = 0)
I purity – degree to which a cluster contains words from one

class only (best = 1)
I global score across the three clustering experiments

3∑
i=1

Purityi −
3∑

i=1
Entropyi
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Noun categorization: results

model 6-way 3-way 2-way global
P E P E P E

Katrenko 89 13 100 0 80 59 197
Peirsman+ 82 23 84 34 86 55 140
dep-typed (DM) 77 24 79 38 59 97 56
dep-filtered 80 28 75 51 61 95 42
window 75 27 68 51 68 89 44
Peirsman− 73 28 71 54 61 96 27
Shaoul 41 77 52 84 55 93 -106

Katrenko, Peirsman+/-, Shaoul: ESSLLI 2008 Shared Task
DM: Baroni & Lenci (2009)
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Semantic priming

I Hearing/reading a “related” prime facilitates access to a target
in various lexical tasks (naming, lexical decision, reading)

I the word pear is recognized/accessed faster if it is heard/read
after apple

I Hodgson (1991) single word lexical decision task, 136
prime-target pairs (cf. Padó & Lapata 2007)

I similar amounts of priming for different semantic relations
between primes and targets (approx. 23 pairs per relation):

F synonyms (synonym): to dread/to fear
F antonyms (antonym): short/tall
F coordinates (coord): train/truck
F super- and subordinate pairs (supersub): container/bottle
F free association pairs (freeass): dove/peace
F phrasal associates (phrasacc): vacant/building
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Simulating semantic priming
McDonald & Brew (2004), Padó & Lapata (2007)

I DSMs and semantic priming
1. for each related prime-target pair, measure cosine-based

similarity between pair items (e.g., to dread/to fear)
2. to estimate unrelated primes, take average of cosine-based

similarity of target with other primes from same relation
data-set (e.g., value/to fear)

3. similarity between related items should be significantly higher
than average similarity between unrelated items

I Significant effects (p < .01) for all semantic relations
I strongest effects for synonyms, antonyms & coordinates
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Finding and distinguishing semantic relations

I Classic distributional semantic models are based on
attributional similarity

I single words/concepts that share attributes / tend to occur in
the same contexts are semantically similar

I Attributional similarity can be modeled with DSMs that have
single words as matrix rows

I matrix columns represent attributes shared by similar words

die kill gun
teacher 109.4 0.0 0.0
victim 1335.2 22.4 0.0
soldier 4547.5 1306.9 105.9
policeman 68.6 38.2 30.5
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Attributional and relational similarity
Turney (2006)

I Policeman is attributionally similar to soldier
I both occur in contexts like: kill X, with gun, for security

I The pair policeman-gun is relationally similar to teacher-book
I both are often connected by with, use, of in context

I It is not always possible to reduce relational similarity to
attributional similarity

I mason:stone :: carpenter:wood
vs. traffic:street :: water:riverbed

F mason - carpenter and stone - wood are attributionally similar
F traffic - water and street - riverbed are not attributionally

similar
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Finding and distinguishing semantic relations with DSMs

I Find non-taxonomic semantic relations
I look at direct co-occurrences of word pairs in texts (when we

talk about a concept, we are likely to also mention its parts,
function, etc.)

I Distinguish between different semantic relations
I use the contexts of pairs to measure pair similarity, and group

them into coherent relation types by their contexts
I pairs that occur in similar contexts (i.e. connected by similar

words and structures) will tend to be related, with the shared
contexts acting as a cue to the nature of their relation, i.e.,
measuring their relational similarity (Turney 2006)
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DSMs and relational similarity

rows word pairs
columns syntagmatic links between the word pairs

in at with use
teacher school 11894.4 7020.1 28.9 0.0
teacher handbook 2.5 0.0 3.2 10.1
soldier gun 2.8 10.3 105.9 41.0
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Recognizing SAT analogies

I 374 SAT multiple-choice questions (Turney 2006)
I Each question includes 1 target pair (stem) and 5 answer pairs
I the task is to choose the pair most analogous to the stem

mason stone
teacher chalk
carpenter wood
soldier gun
photograph camera
book word

I Relational analogue to the TOEFL task
1. for each pair p, take its row vector p
2. for each stem-pair, select the closest answer-pair

(e.g. the one with the highest cosine similarity)
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Recognizing SAT analogies: results

model % correct model % correct
LRA 56.1 KnowBest 43.0
PERT 53.3 DM− 42.3
PairClass 52.1 LSA 42.0
VSM 47.1 AttrMax 35.0
DM+ 45.3 AttrAvg 31.0
PairSpace 44.9 AttrMin 27.3
k-means 44.0 Random 20.0

LRA, PERT, PairClass, VSM, KnowBest, LSA: ACLWiki
AttrMax, AttrAvg, AttrMin: Turney(2006)

DM+, DM-: Baroni & Lenci (2009)
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Domain analogies

I Turney (2008) extends the relational approach to entire
analogical domains

solar system → atom
sun → nucleus
planet → electron
mass → charge
attracts → attracts
revolves → revolves
gravity → electromagnetism
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Intermission

Time for a cup of coffee . . .
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