Matrix algebra \& R as a toy DSM laboratory Distributional Semantic Models

Stefan Evert ${ }^{1}$ \& Alessandro Lenci ${ }^{2}$
${ }^{1}$ University of Osnabrück, Germany
${ }^{2}$ University of Pisa, Italy

Bad cop day!

BASC

The DSM data matrix

DSM data are given as a term-term or term-context matrix:

	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27

- Most DSM parameters irrelevant for mathematical analysis (context type, terms vs. contexts, feature scaling, ...)
- Our example: targets (rows) are nouns, features (columns) are co-occurrences with verbs (V -Obj), raw counts from BNC

The DSM data matrix

DSM data are given as a term-term or term-context matrix:

$$
\mathbf{M}=\left[\begin{array}{cccccc}
51 & 20 & 84 & 0 & 3 & 0 \\
52 & 58 & 4 & 4 & 6 & 26 \\
115 & 83 & 10 & 42 & 33 & 17 \\
59 & 39 & 23 & 4 & 0 & 0 \\
98 & 14 & 6 & 2 & 1 & 0 \\
12 & 17 & 3 & 2 & 9 & 27
\end{array}\right]
$$

- Mathematical notation: matrix \mathbf{M} of real numbers
- Each row is a feature vector for one of the target terms, e.g.

$$
\mathbf{v}_{\mathrm{cat}}=\left[\begin{array}{llllll}
52 & 58 & 4 & 4 & 6 & 26
\end{array}\right]
$$

- n-dimensional vector space $\mathbb{R}^{n} \ni \mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$

Why vector spaces?

- Vector spaces encode basic geometric intuitions
geometric interpretation of numerical feature lists one reason why linear algebra is such a useful tool

Why vector spaces?

- Vector spaces encode basic geometric intuitions
geometric interpretation of numerical feature lists
one reason why linear algebra is such a useful tool
- Interpretation of vectors $\mathbf{x}, \mathbf{y}, \ldots \in \mathbb{R}^{n}$ as points in n-dimensional Euclidean ($=$ intuitive) space
- $n=2 \rightarrow$ Euclidean plane
- $n=3 \rightarrow$ three-dimensional Euclidean space

Why vector spaces?

- Vector spaces encode basic geometric intuitions
geometric interpretation of numerical feature lists
one reason why linear algebra is such a useful tool
- Interpretation of vectors $\mathbf{x}, \mathbf{y}, \ldots \in \mathbb{R}^{n}$ as points in n-dimensional Euclidean ($=$ intuitive) space
- $n=2 \rightarrow$ Euclidean plane
- $n=3 \rightarrow$ three-dimensional Euclidean space
- Exploit geometric intuition for analysis of DSM data as group of points or arrows in Euclidean space
- distance, length, direction, angle, dimension, ...
- intuitive in \mathbb{R}^{2} and \mathbb{R}^{3}
- can be generalised to higher dimensions

I may refer to feature vectors for target terms as "data points"

The geometric interpretation of vectors

Vectors as points

- Vectors like $\mathbf{u}=(4,2)$ and $\mathbf{v}=(3,5)$ can be understood as the coordinates of points in the Euclidean plane
- In this interpretation, vectors identify specific locations in the plane

The geometric interpretation of vectors

Vectors as arrows \& vector addition

- Vectors can also be interpreted as "displacement arrows" between points
- Arrow from \mathbf{u} to \mathbf{v} is described by vector $(-1,3)$
- Calculated as pointwise difference between components of \mathbf{v} and \mathbf{u} : $\mathbf{v}-\mathbf{u}=\left(v_{1}-u_{1}, v_{2}-u_{2}\right)$
- General operation: vector addition

The geometric interpretation of vectors

Vectors as arrows

- Vectors as arrows are position-independent
- $\mathbf{y}-\mathbf{x}=\mathbf{v}-\mathbf{u}$ if the relative positions of \mathbf{x} and \mathbf{y} are the same as those of \mathbf{u} and \mathbf{v}
- Regardless of their location in the plane

The geometric interpretation of vectors

Direction \& scalar multiplication

- Intuitively, arrows have a length and direction
- Arrows point in the same direction iff they are multiples of each other: scalar multiplication $\lambda \mathbf{u}=\left(\lambda u_{1}, \lambda u_{2}\right)$ with constant factor $\lambda \in \mathbb{R}$
- For $\lambda<0$, arrows have opposite directions
- $-\mathbf{u}=(-1) \cdot \mathbf{u}$ is the
 inverse arrow of \mathbf{u}

The geometric interpretation of vectors

Linking points and arrows

- Points in the plane can be identified by displacement arrows from fixed reference point
- A natural reference point is the origin $\mathbf{0}=(0,0)$
- These arrows are given by the same vectors as the point coordinates

Geometric interpretation of DSM data matrix

Reduce DSM matrix to two dimensions for visualisation:

	get	use
knife	51	84
cat	52	4
dog	115	10
boat	59	23
cup	98	6
pig	12	3

Geometric interpretation of DSM data matrix

Reduce DSM matrix to two dimensions for visualisation:

	get	use
knife	51	84
cat	52	4
dog	115	10
boat	59	23
cup	98	6
pig	12	3

The n-dimensional Euclidean space

- The mathematical basis for matrix algebra is the theory of vector spaces, also known as linear algebra
- Before we focue on the analsis of DSM matrices, we will look at some fundamental definitions and results of linear algebra

The n-dimensional Euclidean space

- The mathematical basis for matrix algebra is the theory of vector spaces, also known as linear algebra
- Before we focue on the analsis of DSM matrices, we will look at some fundamental definitions and results of linear algebra
- Definition: the n-dimensional real Euclidean vector space \mathbb{R}^{n} is the set of all real-valued vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ of length n, with the following operations:
- vector addition: $\mathbf{u}+\mathbf{v}:=\left(u_{1}+v_{1}, \ldots, u_{n}+v_{n}\right)$
- scalar multiplication: $\lambda \mathbf{u}:=\left(\lambda u_{1}, \ldots, \lambda u_{n}\right)$ for $\lambda \in \mathbb{R}$

The n-dimensional Euclidean space

- Important properties of the addition and s-multiplication operations in \mathbb{R}^{n}

$$
\begin{aligned}
& \text { 1. }(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \\
& \text { 2. } \mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u} \\
& \text { 3. } \forall \mathbf{u} \exists(-\mathbf{u}): \mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+\mathbf{u}=\mathbf{0} \\
& \text { 4. } \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \\
& \text { 5. }(\lambda+\mu) \mathbf{u}=\lambda \mathbf{u}+\mu \mathbf{u} \\
& \text { 6. }(\lambda \mu) \mathbf{u}=\lambda(\mu \mathbf{u}) \\
& \text { 7. } 1 \cdot \mathbf{u}=\mathbf{u} \\
& \text { 8. } \lambda(\mathbf{u}+\mathbf{v})=\lambda \mathbf{u}+\lambda \mathbf{v} \\
& \text { for any } \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n} \text { and } \lambda, \mu \in \mathbb{R}
\end{aligned}
$$

The axioms of a general vector space

- Abstract vector space over the real numbers \mathbb{R} $=$ set V of vectors $\mathbf{u} \in V$ with operations
- $\mathbf{u}+\mathbf{v} \in V$ for $\mathbf{u}, \mathbf{v} \in V$ (addition)
- $\lambda \mathbf{u} \in V$ for $\lambda \in \mathbb{R}, \mathbf{u} \in V$ (scalar multiplication)
- Addition and s-multiplication must satisfy the axioms

$$
\begin{aligned}
& \text { 1. }(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \\
& \text { 2. } \mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u} \\
& \text { 3. } \forall \mathbf{u} \exists \mathbf{u}^{\prime}: \mathbf{u}+\mathbf{u}^{\prime}=\mathbf{u}^{\prime}+\mathbf{u}=\mathbf{0} \\
& \text { 4. } \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \\
& \text { 5. }(\lambda+\mu) \mathbf{u}=\lambda \mathbf{u}+\mu \mathbf{u} \\
& \text { 6. }(\lambda \mu) \mathbf{u}=\lambda(\mu \mathbf{u}) \\
& \text { 7. } 1 \cdot \mathbf{u}=\mathbf{u} \\
& \text { 8. } \lambda(\mathbf{u}+\mathbf{v})=\lambda \mathbf{u}+\lambda \mathbf{v}
\end{aligned}
$$

$$
\text { for any } \mathbf{u}, \mathbf{v}, \mathbf{w} \in V \text { and } \lambda, \mu \in \mathbb{R}
$$

- $\mathbf{0}$ is the unique neutral element of V, and the unique inverse \mathbf{u}^{\prime} of \mathbf{u} is often written as $-\mathbf{u}$

Further properties of vector spaces

- Further properties of vector spaces:
- $0 \cdot \mathbf{u}=\mathbf{0}$
- $\lambda 0=0$
- $\lambda \mathbf{u}=\mathbf{0} \Rightarrow \lambda=0 \vee \mathbf{u}=\mathbf{0}$
- $(-\lambda) \mathbf{u}=\lambda(-\mathbf{u})=-(\lambda \mathbf{u})=:-\lambda \mathbf{u}$

Further properties of vector spaces

- Further properties of vector spaces:
- $0 \cdot \mathbf{u}=\mathbf{0}$
- $\lambda \mathbf{0}=\mathbf{0}$
- $\lambda \mathbf{u}=\mathbf{0} \Rightarrow \lambda=0 \vee \mathbf{u}=\mathbf{0}$
- $(-\lambda) \mathbf{u}=\lambda(-\mathbf{u})=-(\lambda \mathbf{u})=:-\lambda \mathbf{u}$
- It is easy to show these properties for \mathbb{R}^{n}, but they also follow directly from the general axioms for all vector spaces

Further properties of vector spaces

- Further properties of vector spaces:
- $0 \cdot \mathbf{u}=\mathbf{0}$
- $\lambda 0=0$
- $\lambda \mathbf{u}=\mathbf{0} \Rightarrow \lambda=0 \vee \mathbf{u}=\mathbf{0}$
- $(-\lambda) \mathbf{u}=\lambda(-\mathbf{u})=-(\lambda \mathbf{u})=:-\lambda \mathbf{u}$
- It is easy to show these properties for \mathbb{R}^{n}, but they also follow directly from the general axioms for all vector spaces
- A non-trivial example: vector space $\mathcal{C}[a, b]$ of continuous real functions $f: x \mapsto f(x)$ over the interval $[a, b]$
- vector addition: $\forall f, g \in \mathcal{C}[a, b]$, we define $f+g$ by $(f+g)(x):=f(x)+g(x)$
- s-multiplication: $\forall \lambda \in \mathbb{R}$ and $\forall f \in \mathcal{C}[a, b]$, we define λf by $(\lambda f)(x):=\lambda \cdot f(x)$
One can show that $\mathcal{C}[a, b]$ satisfies the vector space axioms

Linear combinations \& dimensionality

- Linear combination of vectors $\mathbf{u}^{(1)}, \ldots, \mathbf{u}^{(n)}$:

$$
\lambda_{1} \mathbf{u}^{(1)}+\lambda_{2} \mathbf{u}^{(2)}+\cdots+\lambda_{n} \mathbf{u}^{(n)}
$$

for any coefficients $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$

- intuition: all vectors that can be constructed from $\mathbf{u}^{(1)}, \ldots, \mathbf{u}^{(n)}$ using the basic vector operations

Linear combinations \& dimensionality

- Linear combination of vectors $\mathbf{u}^{(1)}, \ldots, \mathbf{u}^{(n)}$:

$$
\lambda_{1} \mathbf{u}^{(1)}+\lambda_{2} \mathbf{u}^{(2)}+\cdots+\lambda_{n} \mathbf{u}^{(n)}
$$

for any coefficients $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$

- intuition: all vectors that can be constructed from $\mathbf{u}^{(1)}, \ldots, \mathbf{u}^{(n)}$ using the basic vector operations
- $\mathbf{u}^{(1)}, \ldots, \mathbf{u}^{(n)}$ are linearly independent iff

$$
\lambda_{1} \mathbf{u}^{(1)}+\lambda_{2} \mathbf{u}^{(2)}+\cdots+\lambda_{n} \mathbf{u}^{(n)}=\mathbf{0}
$$

implies $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0$

Linear combinations \& dimensionality

- Linear combination of vectors $\mathbf{u}^{(1)}, \ldots, \mathbf{u}^{(n)}$:

$$
\lambda_{1} \mathbf{u}^{(1)}+\lambda_{2} \mathbf{u}^{(2)}+\cdots+\lambda_{n} \mathbf{u}^{(n)}
$$

for any coefficients $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$

- intuition: all vectors that can be constructed from $\mathbf{u}^{(1)}, \ldots, \mathbf{u}^{(n)}$ using the basic vector operations
- $\mathbf{u}^{(1)}, \ldots, \mathbf{u}^{(n)}$ are linearly independent iff

$$
\lambda_{1} \mathbf{u}^{(1)}+\lambda_{2} \mathbf{u}^{(2)}+\cdots+\lambda_{n} \mathbf{u}^{(n)}=\mathbf{0}
$$

implies $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0$

- Otherwise, they are linearly dependent
- equivalent: one $\mathbf{u}^{(i)}$ is a linear combination of the other vectors

Linear combinations \& dimensionality

- Largest $n \in \mathbb{N}$ for which there is a set of n linearly independent vectors $\mathbf{u}^{(i)} \in V$ is called the dimension of $V: \operatorname{dim} V=n$
- It can be shown that $\operatorname{dim} \mathbb{R}^{n}=n$

Linear combinations \& dimensionality

- Largest $n \in \mathbb{N}$ for which there is a set of n linearly independent vectors $\mathbf{u}^{(i)} \in V$ is called the dimension of $V: \operatorname{dim} V=n$
- It can be shown that $\operatorname{dim} \mathbb{R}^{n}=n$
- If there is no maximal number of linearly independent vectors, the vector space is infinite-dimensional $(\operatorname{dim} V=\infty)$
- An example is $\operatorname{dim} \mathcal{C}[a, b]=\infty$ (easy to show)

Linear combinations \& dimensionality

- Largest $n \in \mathbb{N}$ for which there is a set of n linearly independent vectors $\mathbf{u}^{(i)} \in V$ is called the dimension of $V: \operatorname{dim} V=n$
- It can be shown that $\operatorname{dim} \mathbb{R}^{n}=n$
- If there is no maximal number of linearly independent vectors, the vector space is infinite-dimensional $(\operatorname{dim} V=\infty)$
- An example is $\operatorname{dim} \mathcal{C}[a, b]=\infty$ (easy to show)
- Every finite-dimensional vector space V is isomorphic to the Euclidean space \mathbb{R}^{n} (with $n=\operatorname{dim} V$)
We will be able to prove this in a little while

Basis \& coordinates

- A set of vectors $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(n)} \in V$ is called a basis of V iff every $\mathbf{u} \in V$ can be written as a linear combination

$$
\mathbf{u}=x_{1} \mathbf{b}^{(1)}+x_{2} \mathbf{b}^{(2)}+\cdots+x_{n} \mathbf{b}^{(n)}
$$

with unique coefficients x_{1}, \ldots, x_{n}

- Number of vectors in a basis $=\operatorname{dim} V$

Basis \& coordinates

- A set of vectors $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(n)} \in V$ is called a basis of V iff every $\mathbf{u} \in V$ can be written as a linear combination

$$
\mathbf{u}=x_{1} \mathbf{b}^{(1)}+x_{2} \mathbf{b}^{(2)}+\cdots+x_{n} \mathbf{b}^{(n)}
$$

with unique coefficients x_{1}, \ldots, x_{n}

- Number of vectors in a basis $=\operatorname{dim} V$
- For every n-dimensional vector space V, a set of n vectors $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(n)} \in V$ is a basis iff they are linearly independent Can you think of a proof?

Basis \& coordinates

- The unique coefficients x_{1}, \ldots, x_{n} are called the coordinates of \mathbf{u} wrt. the basis $B:=\left(\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(n)}\right)$:

$$
\mathbf{u} \equiv B\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=: \mathbf{x}
$$

Basis \& coordinates

- The unique coefficients x_{1}, \ldots, x_{n} are called the coordinates of \mathbf{u} wrt. the basis $B:=\left(\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(n)}\right)$:

$$
\mathbf{u} \equiv B\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=: \mathbf{x}
$$

- $\mathbf{x} \in \mathbb{R}^{n}$ is the coordinate vector of $\mathbf{u} \in V$ wrt. B
V is isomorphic to \mathbb{R}^{n} by virtue of this correspondence

Basis \& coordinates

- The unique coefficients x_{1}, \ldots, x_{n} are called the coordinates of \mathbf{u} wrt. the basis $B:=\left(\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(n)}\right)$:

$$
\mathbf{u} \equiv \equiv_{B}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=: \mathbf{x}
$$

- $\mathbf{x} \in \mathbb{R}^{n}$ is the coordinate vector of $\mathbf{u} \in V$ wrt. B
V is isomorphic to \mathbb{R}^{n} by virtue of this correspondence
- We can think of the rows (or columns) of a DSM matrix \mathbf{M} as coordinates in an abstract vector space
- coordinate transformations play an important role for DSMs

Basis \& coordinates

- The components $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ of a number vector $\mathbf{u} \in \mathbb{R}^{n}$ correspond to its natural coordinates

$$
\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \equiv_{E}\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]
$$

according to the standard basis $\mathbf{e}^{(1)}, \ldots, \mathbf{e}^{(n)}$ of \mathbb{R}^{n} :

$$
\begin{aligned}
\mathbf{e}^{(1)} & =(1,0, \ldots, 0) \\
\mathbf{e}^{(2)} & =(0,1, \ldots, 0) \\
& \vdots \\
\mathbf{e}^{(n)} & =(0,0, \ldots, 1)
\end{aligned}
$$

Basis \& coordinates

- $\mathbf{u}=(4,5) \in \mathbb{R}^{2}$
- Basis B of \mathbb{R}^{2} :

$$
\begin{aligned}
\mathbf{b}^{(1)} & =(2,1) \\
\mathbf{b}^{(2)} & =(-1,1) \\
\cdot \mathbf{u} & \equiv_{B}\left[\begin{array}{l}
3 \\
2
\end{array}\right]
\end{aligned}
$$

Basis \& coordinates

- $\mathbf{u}=(4,5) \in \mathbb{R}^{2}$
- Basis B of \mathbb{R}^{2} :

$$
\begin{aligned}
& \mathbf{b}^{(1)}=(2,1) \\
& \mathbf{b}^{(2)}=(-1,1)
\end{aligned}
$$

- $\mathbf{u} \equiv_{B}\left[\begin{array}{l}3 \\ 2\end{array}\right]$
- Standard basis:

$$
\begin{aligned}
& \mathbf{e}^{(1)}=(1,0) \\
& \mathbf{e}^{(2)}=(0,1)
\end{aligned}
$$

- $\mathbf{u} \equiv{ }_{E}\left[\begin{array}{l}4 \\ 5\end{array}\right]$

Linear subspaces

- The set of all linear combinations of vectors $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)} \in V$ is called the span

$$
\operatorname{sp}\left(\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)}\right):=\left\{\lambda_{1} \mathbf{b}^{(1)}+\cdots+\lambda_{k} \mathbf{b}^{(k)} \mid \lambda_{i} \in \mathbb{R}\right\}
$$

Linear subspaces

- The set of all linear combinations of vectors $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)} \in V$ is called the span

$$
\operatorname{sp}\left(\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)}\right):=\left\{\lambda_{1} \mathbf{b}^{(1)}+\cdots+\lambda_{k} \mathbf{b}^{(k)} \mid \lambda_{i} \in \mathbb{R}\right\}
$$

- sp $\left(\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)}\right)$ forms a linear subspace of V
- a linear subspace is a subset of V that is closed under vector addition and scalar multiplication

Linear subspaces

- The set of all linear combinations of vectors $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)} \in V$ is called the span

$$
\operatorname{sp}\left(\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)}\right):=\left\{\lambda_{1} \mathbf{b}^{(1)}+\cdots+\lambda_{k} \mathbf{b}^{(k)} \mid \lambda_{i} \in \mathbb{R}\right\}
$$

- sp $\left(\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)}\right)$ forms a linear subspace of V
- a linear subspace is a subset of V that is closed under vector addition and scalar multiplication
- $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)}$ form a basis of $\operatorname{sp}\left(\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)}\right)$ iff they are linearly independent

Can you prove that every linear subspace of \mathbb{R}^{n} has a basis?

Linear subspaces

- The set of all linear combinations of vectors $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)} \in V$ is called the span

$$
\operatorname{sp}\left(\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)}\right):=\left\{\lambda_{1} \mathbf{b}^{(1)}+\cdots+\lambda_{k} \mathbf{b}^{(k)} \mid \lambda_{i} \in \mathbb{R}\right\}
$$

- sp $\left(\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)}\right)$ forms a linear subspace of V
- a linear subspace is a subset of V that is closed under vector addition and scalar multiplication
- $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)}$ form a basis of $\operatorname{sp}\left(\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)}\right)$ iff they are linearly independent
Can you prove that every linear subspace of \mathbb{R}^{n} has a basis?
- The rank of vectors $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(k)}$ is the dimension of their span, corresponding to the largest number of linearly independent vectors among them

Linear combinations \& linear subspace

- Example: linear subspace $U \subseteq \mathbb{R}^{3}$ spanned by vectors $\mathbf{b}^{(1)}=(6,0,2), \mathbf{b}^{(2)}=(0,3,3)$ and $\mathbf{b}^{(3)}=(3,1,2)$
- $\operatorname{dim} U=2$ (why?)

Linear combinations \& linear subspace

- Example: linear subspace $U \subseteq \mathbb{R}^{3}$ spanned by vectors $\mathbf{b}^{(1)}=(6,0,2), \mathbf{b}^{(2)}=(0,3,3)$ and $\mathbf{b}^{(3)}=(3,1,2)$
- $\operatorname{dim} U=2$ (because $\mathbf{b}^{(2)}=3 \mathbf{b}^{(3)}-\frac{3}{2} \mathbf{b}^{(1)}$)

Matrix as list of vectors

- Vector $\mathbf{u} \in \mathbb{R}^{n}=$ list of real numbers (coordinates)

Matrix as list of vectors

- Vector $\mathbf{u} \in \mathbb{R}^{n}=$ list of real numbers (coordinates)
- List of k vectors $=$ rectangular array of real numbers, called a $n \times k$ matrix (or $k \times n$ row matrix)

Matrix as list of vectors

- Vector $\mathbf{u} \in \mathbb{R}^{n}=$ list of real numbers (coordinates)
- List of k vectors $=$ rectangular array of real numbers, called a $n \times k$ matrix (or $k \times n$ row matrix)
- Example: vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$

$$
\mathbf{u} \equiv\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right], \quad \mathbf{v} \equiv\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]
$$

form the columns of a matrix \mathbf{A} :

$$
\mathbf{A}=\left[\begin{array}{cc}
\vdots & \vdots \\
\mathbf{u} & \mathbf{v} \\
\vdots & \vdots
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
0 & 2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
$$

Matrix $=$ list of vectors

- $\operatorname{rank}(\mathbf{A})=$ rank of the list of column vectors
- Column matrices are a convention in linear algebra
- But DSM matrix often has row vectors for the target terms

Matrix $=$ list of vectors

- $\operatorname{rank}(\mathbf{A})=$ rank of the list of column vectors
- Column matrices are a convention in linear algebra
- But DSM matrix often has row vectors for the target terms
- Row rank and column rank of a matrix A are always the same (this is not trivial!)

Matrices and linear equation systems

- Matrices are a versatile instrument and a convenient way to express linear operations on sets of numbers
- E.g. coefficient matrix of a linear system of equations:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{k 1} x_{1}+a_{k 2} x_{2}+\cdots+a_{k n} x_{n}=b_{k}
\end{gathered}
$$

Matrices and linear equation systems

- Matrices are a versatile instrument and a convenient way to express linear operations on sets of numbers
- E.g. coefficient matrix of a linear system of equations:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{k 1} x_{1}+a_{k 2} x_{2}+\cdots+a_{k n} x_{n}=b_{k} \\
\Leftrightarrow \mathbf{A}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{k 1} & \cdots & a_{k n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{k}
\end{array}\right]
\end{gathered}
$$

Matrix algebra

- Concise notation of linear equation system by appropriate definition of matrix-vector multiplication

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{k 1} x_{1}+a_{k 2} x_{2}+\cdots+a_{k n} x_{n}=b_{k} \\
{\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{k 1} & \cdots & a_{k n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{k}
\end{array}\right]}
\end{gathered}
$$

Matrix algebra

- Concise notation of linear equation system by appropriate definition of matrix-vector multiplication

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{k 1} x_{1}+a_{k 2} x_{2}+\cdots+a_{k n} x_{n}=b_{k} \\
{\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{k 1} & \cdots & a_{k n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{k}
\end{array}\right]} \\
\Leftrightarrow \mathbf{A} \cdot \mathbf{x}=\mathbf{b}
\end{gathered}
$$

Matrix algebra

- The set of all real-valued $k \times n$ matrices forms a $(k \cdot n)$-dimensional vector space over \mathbb{R} :
- $\mathbf{A}+\mathbf{B}$ is defined by element-wise addition
- $\lambda \mathbf{A}$ is defined by element-wise s-multiplication
- these operations satisfy all vector space axioms

Matrix algebra

- The set of all real-valued $k \times n$ matrices forms a $(k \cdot n)$-dimensional vector space over \mathbb{R} :
- $\mathbf{A}+\mathbf{B}$ is defined by element-wise addition
- $\lambda \mathbf{A}$ is defined by element-wise s-multiplication
- these operations satisfy all vector space axioms
- Additional operation: matrix multiplication
- two equation systems: $\mathbf{z}=\mathbf{B} \cdot \mathbf{y}$ and $\mathbf{y}=\mathbf{C} \cdot \mathbf{x}$
- by inserting the expressions for \mathbf{y} into the first system, we can express \mathbf{z} directly in terms of \mathbf{x} (and use this e.g. to solve the equations for \mathbf{x})
- the result is a linear equation system $\mathbf{z}=\mathbf{A} \cdot \mathbf{x}$
define matrix multiplication such that $\mathbf{A}=\mathbf{B} \cdot \mathbf{C}$

Matrix multiplication

A $=$
$(k \times m)$
B
$(k \times n)$
C
$(n \times m)$

- B and C must be conformable

Matrix multiplication

$$
\begin{aligned}
& {\left[\begin{array}{c}
a_{i j} \\
\end{array}\right] }=\left[\begin{array}{lll}
b_{i 1} & \cdots & b_{i n} \\
& &
\end{array}\right] \cdot\left[\begin{array}{c}
c_{1 j} \\
\vdots \\
\vdots \\
c_{n j}
\end{array}\right] \\
& \underset{(k \times m)}{\mathbf{A}} \begin{array}{c}
\mathbf{B} \\
(k \times n)
\end{array} \quad \begin{array}{c}
\mathbf{C} \\
(n \times m)
\end{array}
\end{aligned}
$$

- B and C must be conformable

Matrix multiplication

- B and C must be conformable

Matrix multiplication

A $=$
$(k \times m)$
$=\begin{gathered}\mathbf{B} \\ (k \times n)\end{gathered}$
C
$\times m)$

- B and C must be conformable
A. \mathbf{x} corresponds to matrix multiplication of \mathbf{A} with a single-column matrix (containing the vector \mathbf{x})
- convention: vector $=$ column matrix

Matrix multiplication

- Algebra $=$ vector space + multiplication operation with the following properties:
- $A(B C)=(A B) C=: A B C$
- $A\left(B+B^{\prime}\right)=A B+A B^{\prime}$
- $\left(A+A^{\prime}\right) B=A B+A^{\prime} B$
- $(\lambda \mathbf{A}) \mathbf{B}=\mathbf{A}(\lambda \mathbf{B})=\lambda(\mathbf{A B})=: \lambda \mathbf{A} \mathbf{B}$
- $\mathbf{A} \cdot \mathbf{0}=\mathbf{0}, \quad \mathbf{0} \cdot \mathbf{B}=\mathbf{0}$
- $\mathbf{A} \cdot \mathbf{I}=\mathbf{A}, \quad \mathbf{I} \cdot \mathbf{B}=\mathbf{B}$
where \mathbf{A}, \mathbf{B} and \mathbf{C} are conformable matrices
- $\mathbf{0}$ is a zero matrix of arbitrary dimensions
- I is a square identity matrix of arbitrary dimensions:

$$
\mathbf{I}:=\left[\begin{array}{lll}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right]
$$

Transposition

- The transpose \mathbf{A}^{T} of a matrix \mathbf{A} swaps rows and columns:

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]^{T}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right]
$$

Transposition

- The transpose \mathbf{A}^{T} of a matrix \mathbf{A} swaps rows and columns:

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]^{T}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right]
$$

- Properties of the transpose:
- $(\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T}$
- $(\lambda \mathbf{A})^{T}=\lambda\left(\mathbf{A}^{T}\right)=: \lambda \mathbf{A}^{T}$
- $(\mathbf{A} \cdot \mathbf{B})^{T}=\mathbf{B}^{T} \cdot \mathbf{A}^{T} \quad$ [note the different order of \mathbf{A} and \mathbf{B} !]
- $\operatorname{rank}\left(\mathbf{A}^{T}\right)=\operatorname{rank}(\mathbf{A})$
- $\mathbf{I}^{\top}=\mathbf{I}$

Transposition

- The transpose \mathbf{A}^{T} of a matrix \mathbf{A} swaps rows and columns:

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]^{T}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right]
$$

- Properties of the transpose:
- $(\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T}$
- $(\lambda \mathbf{A})^{T}=\lambda\left(\mathbf{A}^{T}\right)=: \lambda \mathbf{A}^{T}$
- $(\mathbf{A} \cdot \mathbf{B})^{T}=\mathbf{B}^{T} \cdot \mathbf{A}^{T} \quad$ [note the different order of \mathbf{A} and \mathbf{B} !]
- $\operatorname{rank}\left(\mathbf{A}^{T}\right)=\operatorname{rank}(\mathbf{A})$
- $\mathbf{I}^{\top}=\mathbf{I}$
- \mathbf{A} is called symmetric iff $\mathbf{A}^{T}=\mathbf{A}$
- symmetric matrices have many special properties that will become important later (e.g. eigenvalues)

Vectors and matrices

- A coordinate vector $\mathbf{x} \in \mathbb{R}^{n}$ can be identified with a $n \times 1$ matrix (i.e. a single-column matrix):

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]^{T}
$$

Vectors and matrices

- A coordinate vector $\mathbf{x} \in \mathbb{R}^{n}$ can be identified with a $n \times 1$ matrix (i.e. a single-column matrix):

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]^{T}
$$

- Multiplication of a matrix \mathbf{A} containing the vectors $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(k)}$ with a vector of coefficients $\lambda_{1}, \ldots, \lambda_{k}$ yields a linear combination of $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(k)}$:

$$
\mathbf{A} \cdot\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{k}
\end{array}\right]=\lambda_{1} \mathbf{a}^{(1)}+\cdots+\lambda_{k} \mathbf{a}^{(k)}
$$

R as a toy DSM laboratory

- Matrix algebra is a powerful and convenient tool in numerical mathematics \rightarrow implement DSM with matrix operations
- Specialised (and highly optimised) libraries are available for various programming languages (C, C++, Perl, Python, ...)
- Some numerical programming environments are even based entirely on matrix algebra (Matlab, Octave, NumPy/Sage)
- Statistical software packages like \mathbf{R} also support matrices

R as a toy DSM laboratory

- Matrix algebra is a powerful and convenient tool in numerical mathematics \rightarrow implement DSM with matrix operations
- Specialised (and highly optimised) libraries are available for various programming languages (C, C++, Perl, Python, ...)
- Some numerical programming environments are even based entirely on matrix algebra (Matlab, Octave, NumPy/Sage)
- Statistical software packages like \mathbf{R} also support matrices
- \mathbf{R} as a DSM laboratory for toy models http://www.r-project.org/
- Integrates efficient matrix operations with statistical analysis, clustering, machine learning, visualisation, ...

Matrix algebra with R

Vectors in R:

- u1 <- c (3, 0, 2)
- u2 <- c (0, 2, 2)
- v <- 1:6
- print(v)

$$
\text { [1] } 1223456
$$

Defining matrices:

- A <- matrix(v, nrow=3)
- print(A)
[,1] [,2]
[1,] $1 \quad 4$
$[2] \quad 2 \quad$,
$[3] \quad 3 \quad$,

Matrix algebra in R

Matrix of column vectors:

- B <- cbind(u1, u2)
- print(B)
u1 u2
[1,] 30
$[2] \quad 0 \quad$,
$[3] \quad 2 \quad$,

Matrix of row vectors:

- C <- rbind(u1, u2)
- print(C)
[,1] [,2] [,3]

u	3	0	2

u2 $0 \quad 2 \quad 2$

Matrix algebra in R

Matrix multiplication:

- A \% * \% C

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	3	8	10
$[2]$,	6	10	14
$[3]$,	9	12	18

- NB: * does not perform matrix multiplication

Also for multiplication of matrix with vector:

- C \% $\%$ \% c $(1,1,0)$
[,1]
u1 3
u2 2
(T) result of multiplication is a column vector (i.e. plain vectors are interpreted as column vectors in matrix operations)

Matrix algebra in R

Transpose of matrix:

- t (A)

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	2	3
$[2]$,	4	5	6

Transposition of vectors:

- t(u1) (row vector)

$$
\begin{array}{rlrr}
& {[, 1]} & {[, 2]} & {[, 3]} \\
{[1,]} & 0 & 2
\end{array}
$$

- $t(t(u 1))$ (explicit column vector) [,1]
[1,] 3
[2,] 0
[3,] 2

Matrix algebra in R

Rank of a matrix:

- qr (A) \$rank 2
- la.rank <- function (A) qr (A) \$rank
- la.rank(A)

Column rank $=$ row rank:

- la.rank(A) == la.rank(t(A))
[1] TRUE
$\mathbf{A}^{T} \cdot \mathbf{A}$ is symmetric (can you prove this?):
- t(A) $\% * \% \mathrm{~A}$

Linear maps

- A linear map is a homomorphism between two vector spaces V and W, i.e. a function $f: V \rightarrow W$ that is compatible with addition and s-multiplication:
(1) $f(\mathbf{u}+\mathbf{v})=f(\mathbf{u})+f(\mathbf{v})$
(2) $f(\lambda \mathbf{u})=\lambda \cdot f(\mathbf{u})$

Linear maps

- A linear map is a homomorphism between two vector spaces V and W, i.e. a function $f: V \rightarrow W$ that is compatible with addition and s-multiplication:
(1) $f(\mathbf{u}+\mathbf{v})=f(\mathbf{u})+f(\mathbf{v})$
(2) $f(\lambda \mathbf{u})=\lambda \cdot f(\mathbf{u})$
- Obviously, f is uniquely determined by the images $f\left(\mathbf{b}^{(1)}\right), \ldots, f\left(\mathbf{b}^{(n)}\right)$ of any basis $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(n)}$ of V

Linear maps

- A linear map is a homomorphism between two vector spaces V and W, i.e. a function $f: V \rightarrow W$ that is compatible with addition and s-multiplication:
(1) $f(\mathbf{u}+\mathbf{v})=f(\mathbf{u})+f(\mathbf{v})$
(2) $f(\lambda \mathbf{u})=\lambda \cdot f(\mathbf{u})$
- Obviously, f is uniquely determined by the images $f\left(\mathbf{b}^{(1)}\right), \ldots, f\left(\mathbf{b}^{(n)}\right)$ of any basis $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(n)}$ of V
- Using natural coordinates, a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ can therefore be described by the vectors

$$
f\left(\mathbf{e}^{(1)}\right) \equiv_{E}\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{k 1}
\end{array}\right], \ldots, f\left(\mathbf{e}^{(n)}\right) \equiv_{E}\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{k n}
\end{array}\right]
$$

Matrix representation of a linear map

- For a vector $\mathbf{u}=x_{1} \mathbf{e}^{(1)}+\cdots+x_{n} \mathbf{e}^{(n)} \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
\mathbf{v}=f(\mathbf{u}) & =f\left(x_{1} \mathbf{e}^{(1)}+\cdots+x_{n} \mathbf{e}^{(n)}\right) \\
& =x_{1} \cdot f\left(\mathbf{e}^{(1)}\right)+\cdots+x_{n} \cdot f\left(\mathbf{e}^{(n)}\right)
\end{aligned}
$$

and hence the natural coordinate vector \mathbf{y} of \mathbf{v} is given by

$$
y_{j}=x_{1} \cdot a_{j 1}+x_{2} \cdot a_{j 2}+\cdots+x_{n} \cdot a_{j n}
$$

Matrix representation of a linear map

- For a vector $\mathbf{u}=x_{1} \mathbf{e}^{(1)}+\cdots+x_{n} \mathbf{e}^{(n)} \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
\mathbf{v}=f(\mathbf{u}) & =f\left(x_{1} \mathbf{e}^{(1)}+\cdots+x_{n} \mathbf{e}^{(n)}\right) \\
& =x_{1} \cdot f\left(\mathbf{e}^{(1)}\right)+\cdots+x_{n} \cdot f\left(\mathbf{e}^{(n)}\right)
\end{aligned}
$$

and hence the natural coordinate vector \mathbf{y} of \mathbf{v} is given by

$$
y_{j}=x_{1} \cdot a_{j 1}+x_{2} \cdot a_{j 2}+\cdots+x_{n} \cdot a_{j n}
$$

- This corresponds to matrix multiplication

$$
\begin{aligned}
& {\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{k}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{k 1} & \cdots & a_{k n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]} \\
& \Rightarrow \quad \mathbf{v}=f(\mathbf{u}) \Longleftrightarrow \mathbf{y}=\mathbf{A} \cdot \mathbf{x}
\end{aligned}
$$

Image \& kernel

- The image of a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is the subspace of all values $\mathbf{v} \in \mathbb{R}^{k}$ that $f(\mathbf{u})$ can assume for $\mathbf{u} \in \mathbb{R}^{n}$:

$$
\operatorname{Im}(f):=\operatorname{sp}\left(f\left(\mathbf{e}^{(1)}\right), \ldots, f\left(\mathbf{e}^{(n)}\right)\right)
$$

Image \& kernel

- The image of a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is the subspace of all values $\mathbf{v} \in \mathbb{R}^{k}$ that $f(\mathbf{u})$ can assume for $\mathbf{u} \in \mathbb{R}^{n}$:

$$
\operatorname{Im}(f):=\operatorname{sp}\left(f\left(\mathbf{e}^{(1)}\right), \ldots, f\left(\mathbf{e}^{(n)}\right)\right)
$$

- The rank of f is defined by $\operatorname{rank}(f):=\operatorname{dim}(\operatorname{lm}(f))$
- $\operatorname{rank}(f)=\operatorname{rank}(\mathbf{A})$ for the matrix representation \mathbf{A}
- f is surjective (onto) iff $\operatorname{Im}(f)=\mathbb{R}^{k}$, i.e. $\operatorname{rank}(f)=k$

Image \& kernel

- The image of a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is the subspace of all values $\mathbf{v} \in \mathbb{R}^{k}$ that $f(\mathbf{u})$ can assume for $\mathbf{u} \in \mathbb{R}^{n}$:

$$
\operatorname{Im}(f):=\operatorname{sp}\left(f\left(\mathbf{e}^{(1)}\right), \ldots, f\left(\mathbf{e}^{(n)}\right)\right)
$$

- The rank of f is defined by $\operatorname{rank}(f):=\operatorname{dim}(\operatorname{lm}(f))$
- $\operatorname{rank}(f)=\operatorname{rank}(\mathbf{A})$ for the matrix representation \mathbf{A}
- f is surjective (onto) iff $\operatorname{Im}(f)=\mathbb{R}^{k}$, i.e. $\operatorname{rank}(f)=k$
- The kernel of f is the subspace of all $\mathbf{x} \in \mathbb{R}^{n}$ that are mapped to $\mathbf{0} \in \mathbb{R}^{k}$:

$$
\operatorname{Ker}(f):=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid f(\mathbf{x})=\mathbf{0}\right\}
$$

Rank \& composition

- We have $\operatorname{dim}(\operatorname{Im}(f))+\operatorname{dim}(\operatorname{Ker}(f))=n$
- f is injective iff every $\mathbf{v} \in \operatorname{Im}(f)$ has a unique preimage $\mathbf{v}=f(\mathbf{u})$, i.e. iff $\operatorname{Ker}(f)=\{\mathbf{0}\}$ or $\operatorname{rank}(f)=n$

Rank \& composition

- We have $\operatorname{dim}(\operatorname{Im}(f))+\operatorname{dim}(\operatorname{Ker}(f))=n$
- f is injective iff every $\mathbf{v} \in \operatorname{Im}(f)$ has a unique preimage $\mathbf{v}=f(\mathbf{u})$, i.e. iff $\operatorname{Ker}(f)=\{\mathbf{0}\}$ or $\operatorname{rank}(f)=n$
- The composition of linear maps corresponds to matrix multiplication:

Rank \& composition

- We have $\operatorname{dim}(\operatorname{Im}(f))+\operatorname{dim}(\operatorname{Ker}(f))=n$
- f is injective iff every $\mathbf{v} \in \operatorname{Im}(f)$ has a unique preimage $\mathbf{v}=f(\mathbf{u})$, i.e. iff $\operatorname{Ker}(f)=\{\mathbf{0}\}$ or $\operatorname{rank}(f)=n$
- The composition of linear maps corresponds to matrix multiplication:
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ given by a $k \times n$ matrix \mathbf{A}
- $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ given by a $m \times k$ matrix \mathbf{B}
- recall that $(g \circ f)(\mathbf{u}):=g(f(\mathbf{u}))$

Rank \& composition

- We have $\operatorname{dim}(\operatorname{Im}(f))+\operatorname{dim}(\operatorname{Ker}(f))=n$
- f is injective iff every $\mathbf{v} \in \operatorname{Im}(f)$ has a unique preimage $\mathbf{v}=f(\mathbf{u})$, i.e. iff $\operatorname{Ker}(f)=\{\mathbf{0}\}$ or $\operatorname{rank}(f)=n$
- The composition of linear maps corresponds to matrix multiplication:
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ given by a $k \times n$ matrix \mathbf{A}
- $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ given by a $m \times k$ matrix \mathbf{B}
- recall that $(g \circ f)(\mathbf{u}):=g(f(\mathbf{u}))$
\Rightarrow the composition $g \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is given by the matrix product $\mathbf{B} \cdot \mathbf{A}$

The inverse matrix

- A linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called an endomorphism
- can be represented by a square matrix \mathbf{A}

The inverse matrix

- A linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called an endomorphism
- can be represented by a square matrix \mathbf{A}
- f surjective $\Longleftrightarrow \operatorname{rank}(f)=n \Longleftrightarrow f$ injective
- $\operatorname{rank}(f)=\operatorname{rank}\left(f\left(\mathbf{e}^{(1)}\right), \ldots, f\left(\mathbf{e}^{(n)}\right)\right)=n$
$\Longleftrightarrow \operatorname{rank}(\mathbf{A})=n \Longleftrightarrow \operatorname{det} \mathbf{A} \neq 0$

The inverse matrix

- A linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called an endomorphism
- can be represented by a square matrix \mathbf{A}
- f surjective $\Longleftrightarrow \operatorname{rank}(f)=n \Longleftrightarrow f$ injective
- $\operatorname{rank}(f)=\operatorname{rank}\left(f\left(\mathbf{e}^{(1)}\right), \ldots, f\left(\mathbf{e}^{(n)}\right)\right)=n$
$\Longleftrightarrow \operatorname{rank}(\mathbf{A})=n \Longleftrightarrow \operatorname{det} \mathbf{A} \neq 0$
$\Rightarrow f$ bijective (one-to-one) $\Longleftrightarrow \operatorname{det} \mathbf{A} \neq 0$

The inverse matrix

- A linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called an endomorphism
- can be represented by a square matrix \mathbf{A}
- f surjective $\Longleftrightarrow \operatorname{rank}(f)=n \Longleftrightarrow f$ injective
- $\operatorname{rank}(f)=\operatorname{rank}\left(f\left(\mathbf{e}^{(1)}\right), \ldots, f\left(\mathbf{e}^{(n)}\right)\right)=n$
$\Longleftrightarrow \operatorname{rank}(\mathbf{A})=n \Longleftrightarrow \operatorname{det} \mathbf{A} \neq 0$
$\Rightarrow f$ bijective (one-to-one) $\Longleftrightarrow \operatorname{det} \mathbf{A} \neq 0$
- If f is bijective, there exists an inverse function $f^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, which is also a linear map and satisfies $f^{-1}(f(\mathbf{u}))=\mathbf{u}$ and $f\left(f^{-1}(\mathbf{v})\right)=\mathbf{v}$
- f^{-1} is given by the inverse matrix \mathbf{A}^{-1} of \mathbf{A}, which must satisfy $\mathbf{A}^{-1} \cdot \mathbf{A}=\mathbf{A} \cdot \mathbf{A}^{-1}=\mathbf{I}$

Linear equation systems

- Recall that a linear system of equations can be written in compact matrix notation:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{k 1} x_{1}+a_{k 2} x_{2}+\cdots+a_{k n} x_{n}=b_{k}
\end{gathered}
$$

Linear equation systems

- Recall that a linear system of equations can be written in compact matrix notation:

$$
\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{k 1} & \ldots & a_{k n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{k}
\end{array}\right]
$$

Linear equation systems

- Recall that a linear system of equations can be written in compact matrix notation:

$$
\mathbf{A} \cdot \mathbf{x}=\mathbf{b}
$$

Linear equation systems

- Recall that a linear system of equations can be written in compact matrix notation:

$$
\mathbf{A} \cdot \mathbf{x}=\mathbf{b}
$$

- Obviously, A describes a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, and the linear system of equations can be written $f(\mathbf{x})=\mathbf{b}$

Linear equation systems

- Recall that a linear system of equations can be written in compact matrix notation:

$$
\mathbf{A} \cdot \mathbf{x}=\mathbf{b}
$$

- Obviously, A describes a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, and the linear system of equations can be written $f(\mathbf{x})=\mathbf{b}$
- This linear system can be solved iff $\mathbf{b} \in \operatorname{Im}(f)$, i.e. iff \mathbf{b} is a linear combination of the column vectors of \mathbf{A}

Linear equation systems

- Recall that a linear system of equations can be written in compact matrix notation:

$$
\mathbf{A} \cdot \mathbf{x}=\mathbf{b}
$$

- Obviously, A describes a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, and the linear system of equations can be written $f(\mathbf{x})=\mathbf{b}$
- This linear system can be solved iff $\mathbf{b} \in \operatorname{Im}(f)$, i.e. iff \mathbf{b} is a linear combination of the column vectors of \mathbf{A}
- The solution is given by the coefficients x_{1}, \ldots, x_{n} of this linear combination

Linear equation systems

- The linear system has a solution for arbitrary $\mathbf{b} \in \mathbb{R}^{k}$ iff f is surjective, i.e. iff $\operatorname{rank}(\mathbf{A})=k$

Linear equation systems

- The linear system has a solution for arbitrary $\mathbf{b} \in \mathbb{R}^{k}$ iff f is surjective, i.e. iff $\operatorname{rank}(\mathbf{A})=k$
- Solutions of the linear system are unique iff f is injective, i.e. iff $\operatorname{rank}(\mathbf{A})=n$ (the column vectors are linearly independent)

Linear equation systems

- The linear system has a solution for arbitrary $\mathbf{b} \in \mathbb{R}^{k}$ iff f is surjective, i.e. iff $\operatorname{rank}(\mathbf{A})=k$
- Solutions of the linear system are unique iff f is injective, i.e. iff $\operatorname{rank}(\mathbf{A})=n$ (the column vectors are linearly independent)
- If $k=n$ (i.e. \mathbf{A} is a square matrix), the linear map f is an endomorphism. Consequently, the linear system has a unique solution for arbitrary $\mathbf{b} i f f \operatorname{det} \mathbf{A} \neq 0$

Linear equation systems

- The linear system has a solution for arbitrary $\mathbf{b} \in \mathbb{R}^{k}$ iff f is surjective, i.e. iff $\operatorname{rank}(\mathbf{A})=k$
- Solutions of the linear system are unique iff f is injective, i.e. iff $\operatorname{rank}(\mathbf{A})=n$ (the column vectors are linearly independent)
- If $k=n$ (i.e. \mathbf{A} is a square matrix), the linear map f is an endomorphism. Consequently, the linear system has a unique solution for arbitrary $\mathbf{b} i f f \operatorname{det} \mathbf{A} \neq 0$
- In this case, the solution can be computed with the inverse function f^{-1} or the inverse matrix \mathbf{A}^{-1} :

$$
\mathbf{x}=f^{-1}(\mathbf{b})=\mathbf{A}^{-1} \cdot \mathbf{b}
$$

practically, \mathbf{A}^{-1} is often determined by solving the corresponding linear system of equations

Linear equation systems

Solving equation systems in R :

- A <- rbind $(c(1,3), c(2,-1))$
- $b<-c(5,3)$
- la.rank(A) (test that \mathbf{A} is invertible)

Linear equation systems

Solving equation systems in R :

- A <- rbind $(c(1,3), c(2,-1))$
- b <- c $(5,3)$
- la.rank(A) (test that \mathbf{A} is invertible)
- A.inv <- solve(A) (inverse matrix \mathbf{A}^{-1})
- print(round(A.inv, digits=3))
[,1] [,2]
[1,] $0.143 \quad 0.429$
[2,] $0.286-0.143$

Linear equation systems

Solving equation systems in R :

- $A<-r b i n d(c(1,3), c(2,-1))$
- b <- c $(5,3)$
- la.rank(A) (test that \mathbf{A} is invertible)
- A.inv <- solve(A) (inverse matrix \mathbf{A}^{-1})
- print(round(A.inv, digits=3))
[,1] [,2]
[1,] 0.1430 .429
[2,] $0.286-0.143$
- A.inv $\%$ * b
[,1]
[1,] 2
[2,] 1
- solve(A, b) (recommended: calculate $\mathbf{A}^{-1} \cdot \mathbf{b}$ directly)

Coordinate transformations

- We want to transform between coordinates with respect to a basis $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(n)}$ and standard coordinates in \mathbb{R}^{n}

Coordinate transformations

- The basis can be represented by a matrix \mathbf{B} whose columns are the standard coordinates of $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(n)}$
- Given a vector $\mathbf{u} \in \mathbb{R}^{n}$ with standard coordinates $\mathbf{u} \equiv_{E} \mathbf{x}$ and B-coordinates $\mathbf{u} \equiv_{B} \mathbf{y}$, we have

$$
\mathbf{u}=y_{1} \mathbf{b}^{(1)}+\cdots+y_{n} \mathbf{b}^{(n)}
$$

Coordinate transformations

- The basis can be represented by a matrix \mathbf{B} whose columns are the standard coordinates of $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(n)}$
- Given a vector $\mathbf{u} \in \mathbb{R}^{n}$ with standard coordinates $\mathbf{u} \equiv_{E} \mathbf{x}$ and B-coordinates $\mathbf{u} \equiv_{B} \mathbf{y}$, we have

$$
\mathbf{u}=y_{1} \mathbf{b}^{(1)}+\cdots+y_{n} \mathbf{b}^{(n)}
$$

- In standard coordinates, this equation corresponds to matrix multiplication:

$$
x=B \cdot y
$$

\Leftrightarrow Matrix \mathbf{B} transforms B-coordinates into standard coordinates

Coordinate transformations

- To transform from standard coordinates into B-coordinates, i.e. from \mathbf{x} to \mathbf{y}, we must solve the linear system $\mathbf{x}=\mathbf{B y}$

Coordinate transformations

- To transform from standard coordinates into B-coordinates, i.e. from \mathbf{x} to \mathbf{y}, we must solve the linear system $\mathbf{x}=\mathbf{B y}$
- Since the $\mathbf{b}^{(i)}$ are linearly independent, \mathbf{B} is regular and the inverse \mathbf{B}^{-1} exists, so that

$$
\mathbf{y}=\mathbf{B}^{-1} \mathbf{x}
$$

\Rightarrow The inverse matrix \mathbf{B}^{-1} transforms from standard coordinates into B-coordinates

Coordinate transformations

- To transform from standard coordinates into B-coordinates, i.e. from \mathbf{x} to \mathbf{y}, we must solve the linear system $\mathbf{x}=\mathbf{B y}$
- Since the $\mathbf{b}^{(i)}$ are linearly independent, \mathbf{B} is regular and the inverse \mathbf{B}^{-1} exists, so that

$$
\mathbf{y}=\mathbf{B}^{-1} \mathbf{x}
$$

\Rightarrow The inverse matrix \mathbf{B}^{-1} transforms from standard coordinates into B-coordinates

- Recall that $\mathbf{B B}^{-1}=\mathbf{B}^{-1} \mathbf{B}=\mathbf{I}$ (transform back \& forth)
- Transformation from B-coordinates $\left(\mathbf{u} \equiv_{B} \mathbf{y}\right)$ into arbitrary C-coordinates $(\mathbf{u} \equiv \mathrm{C} \mathbf{z})$:

$$
z=C^{-1} B y
$$

Coordinate transformations: an example

Coordinate transformations: an example

- Basis $\mathbf{b}^{(1)}=(2,1), \mathbf{b}^{(2)}=(-1,1)$ with matrix representation

$$
\mathbf{B}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right], \quad \mathbf{B}^{-1}=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right]
$$

Coordinate transformations: an example

- Basis $\mathbf{b}^{(1)}=(2,1), \mathbf{b}^{(2)}=(-1,1)$ with matrix representation

$$
\mathbf{B}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right], \quad \mathbf{B}^{-1}=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right]
$$

- Vector $\mathbf{u}=(4,5)$ with standard and B-coordinates

$$
\mathbf{u} \equiv_{E}\left[\begin{array}{l}
4 \\
5
\end{array}\right], \quad \mathbf{u} \equiv C\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Coordinate transformations: an example

- Basis $\mathbf{b}^{(1)}=(2,1), \mathbf{b}^{(2)}=(-1,1)$ with matrix representation

$$
\mathbf{B}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right], \quad \mathbf{B}^{-1}=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right]
$$

- Vector $\mathbf{u}=(4,5)$ with standard and B-coordinates

$$
\mathbf{u} \equiv_{E}\left[\begin{array}{l}
4 \\
5
\end{array}\right], \quad \mathbf{u} \equiv C\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

- Check that these equalities hold:

$$
\left[\begin{array}{l}
4 \\
5
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

Coordinate transformations: an example

- Basis $\mathbf{b}^{(1)}=(2,1), \mathbf{b}^{(2)}=(-1,1)$ with matrix representation

$$
\mathbf{B}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right], \quad \mathbf{B}^{-1}=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right]
$$

- Vector $\mathbf{u}=(4,5)$ with standard and B-coordinates

$$
\mathbf{u} \equiv_{E}\left[\begin{array}{l}
4 \\
5
\end{array}\right], \quad \mathbf{u} \equiv C\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

- Check that these equalities hold:

$$
\left[\begin{array}{l}
4 \\
5
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

- Now perform the calculations in R!

Playtime: toy DSM laboratory

- Goal: construct and analyse DSM entirely in \mathbf{R}
- We will build the small noun-verb matrix from the introduction
- Data: verb-object co-occurrence tokens from British National Corpus (extracted with regexp query, both words lemmatised)
- Text table with $3,406,821$ co-occurence tokens in file bnc_vobj_filtered.txt.gz
acquire deficiency affect body
fight infection
face condition
serve interest put back

Preliminaries

\# This is a comment: do not type comment lines into R!
\# You should be able to execute most commands by copy \& paste
> $(1: 10)^{\wedge} 2$
[1] $\begin{array}{lllllllllll}1 & 4 & 9 & 16 & 25 & 36 & 49 & 64 & 81 & 100\end{array}$
\# The > indicates the R command prompt; it is not part of the input!
\# Output of an R command is shown in blue below the command
\# Long commands may require continuation lines starting with +;
\# you should enter such commands on a single line, if possible
> $\mathrm{c}(1$,
$+\quad 2$,
+3)
[1] 123

Reading the co-occurrence tokens

\# Load tabular data with read.table(); options save memory and ensure \# that strings are loaded correctly; gzfile() decompresses on the fly
> tokens <- read.table(gzfile("bnc_vobj_filtered.txt.gz"),

+ colClasses="character", quote="", + col.names=c("verb", "noun"))
\# You must first "change working directory" to where you have saved the file; \# if you can't, then replace filename by file.choose() above
\# If you have problems with the compressed file, then decompress the disk file \# (some Web browsers may do this automatically) and load with
> tokens <- read.table("bnc_vobj_filtered.txt",
+ col.names=c("verb", "noun"))

Reading the co-occurrence tokens

\# The variable tokens now holds co-occurrence tokens as a table \# (in R lingo, such tables are called data.frames)
\# Size of the table (rows, columns) and first 6 rows
> dim(tokens)
[1] $3406821 \quad 2$
> head(tokens, 6)
verb noun
acquire deficiency affect body
fight infection
face condition
5 serve interest
6 put back

Filtering selected verbs \& nouns

\# Example matrix for selected nouns and verbs
> selected.nouns <- c("knife", "cat", "dog", "boat", "cup","pig")
> selected.verbs <- c("get","see", "use", "hear", "eat", "kill")
\# \%in\% operator tests whether value is contained in list;
\# note the single \& for logical "and" (vector operation)
> tokens <- subset(tokens, verb \%in\% selected.verbs \&

+ noun \%in\% selected.nouns)
\# How many co-occurrence tokens are left?
> dim(tokens)
[1] 9242
> head(tokens, 5)
verb noun
2813 get knife
6021 see pig
6489 see cat
24130 see cat
26620 see boat

Co-occurrence counts

```
# Contstruct matrix of co-occurrence counts (contingency table)
> M <- table(tokens$noun, tokens$verb)
> M
\begin{tabular}{lrrrrrr} 
& eat & get & hear & kill & see & use \\
boat & 0 & 59 & 4 & 0 & 39 & 23 \\
cat & 6 & 52 & 4 & 26 & 58 & 4 \\
cup & 1 & 98 & 2 & 0 & 14 & 6 \\
dog & 33 & 115 & 42 & 17 & 83 & 10 \\
knife & 3 & 51 & 0 & 0 & 20 & 84 \\
pig & 9 & 12 & 2 & 27 & 17 & 3
\end{tabular}
```

\# Use subscripts to extract row and column vectors
> M["cat",]
eat get hear kill see use

6	52	4	26	58	4

> M[, "use"]

boat	cat	cup	dog knife	pig	
23	4	6	10	84	3

Marginal frequencies

\# For the calculating association scores, we need the marginal frequencies \# of the nouns and verbs; for simplicity, we obtain them by summing over the \# rows and columns of the table (this is not mathematically correct!)
> f.nouns <- rowSums(M)
> f.verbs <- colSums(M)
> N <- sum(M) \# sample size (sum over all cells of the table)
> f.nouns

boat	cat	cup	dog	knife	pig
125	150	121	300	158	70

> f.verbs
eat get hear kill see use
$\begin{array}{llllll}52 & 387 & 54 & 70 & 231 & 130\end{array}$
$>\mathrm{N}$
[1] 924

Expected and observed frequencies

Expected frequencies: $E_{i j}=\frac{f_{i}^{(\text {noun })} \cdot f_{j}^{(\text {verb) })}}{N}$
can be calculated efficiently with outer product $\mathbf{f}^{(n)} \cdot\left(\mathbf{f}^{(v)}\right)^{T}$:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} \\
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3}
\end{array}\right]
$$

Expected and observed frequencies

Expected frequencies: $E_{i j}=\frac{f_{i}^{(\text {noun })} \cdot f_{j}^{(\text {verb) })}}{N}$
can be calculated efficiently with outer product $\mathbf{f}^{(n)} \cdot\left(\mathbf{f}^{(\mathrm{v})}\right)^{T}$:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} \\
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3}
\end{array}\right]
$$

> E <- f.nouns \% \% \% t(f.verbs) / N
$>$ round $(E, 1)$
eat get hear kill see use
[1,] $7.0 \quad 52.4 \quad 7.3 \quad 9.5 \quad 31.2 \quad 17.6$
[2,] $8.4 \quad 62.8 \quad 8.811 .437 .5 \quad 21.1$
$\begin{array}{lllllll}{[3,]} & 6.8 & 50.7 & 7.1 & 9.2 & 30.2 & 17.0\end{array}$
\# Observed frequencies are simply the entries of M
> O <- M

Feature scaling: log frequencies

\# Because of Zipf's law, frequency distributions are highly skewed; \# DSM matrix M will be dominated by high-frequency entries
\# Solution 1: transform into logarithmic frequencies
> M1 <- $\log 10(\mathrm{M}+1) \quad \#$ discounted (+1) to avoid $\log (0)$
> round(M1, 2)

| | eat | get hear kill | see | use | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| boat | 0.00 | 1.78 | 0.70 | 0.00 | 1.60 | 1.38 |
| cat | 0.85 | 1.72 | 0.70 | 1.43 | 1.77 | 0.70 |
| cup | 0.30 | 2.00 | 0.48 | 0.00 | 1.18 | 0.85 |
| dog | 1.53 | 2.06 | 1.63 | 1.26 | 1.92 | 1.04 |
| knife | 0.60 | 1.72 | 0.00 | 0.00 | 1.32 | 1.93 |
| pig | 1.00 | 1.11 | 0.48 | 1.45 | 1.26 | 0.60 |

Feature scaling: association measures

Simple association measures can be expressed in terms of observed (O) and expected (E) frequencies, e.g. t-score:

$$
t=\frac{O-E}{\sqrt{O}}
$$

You can implement any of the equations in (Evert 2008)

	eat	get	hear	kill	see	use
boat	-7.03	0.86	-1.48	-9.47	1.23	1.11
cat	-0.92	-1.49	-2.13	2.82	2.67	-7.65
cup	-4.11	4.76	-2.93	-9.17	-4.20	-4.17
dog	2.76	-0.99	3.73	-1.35	0.87	-9.71
knife	-2.95	-2.10	-9.23	-11.97	-4.26	6.70
pig	1.60	-4.80	-1.21	4.10	-0.12	-3.42

Feature scaling: sparse association measures

\# 'Sparse" association measures set all negative associations to 0 ; \# this can be done with ifelse(), a vectorised if statement
> M3 <- ifelse(O >= E, (0 - E) / sqrt(O), O)
> round (M3, 2)

```
    eat get hear kill see use
```

boat 0.000 .870 .000 .001 .241 .13
cat 0.000 .000 .002 .872 .690 .00
$\begin{array}{llllllllllll}\text { cup } & 0.00 & 4.78 & 0.00 & 0.00 & 0.00 & 0.00\end{array}$
dog $2.810 .00 \quad 3.78 \quad 0.00 \quad 0.88 \quad 0.00$
knife 0.000 .000 .000 .000 .006 .74
pig $1.690 .000 .004 .18 \quad 0.00 \quad 0.00$
\# Pick your favourite scaling method here!
> M <- M2

Visualisation: plot two selected dimensions

> M.2d <- M[, c("get", "use")]
$>$ round (M.2d, 2)
get use

$$
\text { boat } 0.86 \quad 1.11
$$

$$
\text { cat } \quad-1.49-7.65
$$

$$
\begin{array}{lll}
\text { cup } & 4.76 & -4.17
\end{array}
$$

$$
\operatorname{dog} \quad-0.99 \quad-9.71
$$

$$
\text { knife -2.10 } 6.70
$$

$$
\text { pig } \quad-4.80-3.42
$$

\# Two-column matrix automatically interpreted as x - and y-coordinates
> plot(M.2d, pch=20, col="red", main="DSM visualisation")
\# Add labels: the text strings are the rownames of M
> text(M.2d, labels=rownames(M.2d), pos=3)

Visualisation: plot two selected dimensions

DSM visualisation

Norm \& distance

Intuitive length of vector \mathbf{x} : Euclidean norm

$$
\mathbf{x} \mapsto\|\mathbf{x}\|_{2}=\sqrt{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\cdots+\left(x_{n}\right)^{2}}
$$

Euclidean distance metric: $d_{2}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|_{2}$
more about norms and distances on Thursday
\# R function definitions look almost like mathematical definitions

```
euclid.norm <- function (x) sqrt(sum(x * x))
euclid.dist <- function (x, y) euclid.norm(x - y)
```


Normalisation to unit length

\# Compute lengths (norms) of all row vectors
> row.norms <- apply (M, 1, euclid.norm) \#1 = rows, 2 = columns
> round(row.norms, 2)
boat cat cup dog knife pig
$\begin{array}{lllllllllll}12.03 & 9.01 & 12.93 & 10.93 & 17.45 & 7.46\end{array}$
\# Normalisation: divide each row by its norm; this a rescaling of the row
\# "dimensions" and can be done by multiplication with a diagonal matrix
> scaling.matrix <- diag(1 / row.norms)
> round(scaling.matrix, 3)
> M.norm <- scaling.matrix \%*\% M
> round(M.norm, 2)

	eat	get	hear	kill	see	use
$[1]$,	-0.58	0.07	-0.12	-0.79	0.10	0.09
$[2]$,	-0.10	-0.17	-0.24	0.31	0.30	-0.85
$[3]$,	-0.32	0.37	-0.23	-0.71	-0.32	-0.32

Distances between row vectors

\# Matrix multiplication has lost the row labels (copy from M)
> rownames(M.norm) <- rownames(M)
\# To calculate distances of all terms e.g. from "dog", apply euclid.dist() \# function to rows, supplying the "dog" vector as fixed second argument
> v.dog <- M.norm["dog",]
> dist.dog <- apply(M.norm, 1, euclid.dist, y=v.dog)
\# Now we can sort the vector of distances to find nearest neighbours > sort(dist.dog)

dog	cat	pig	cup	boat	knife
0.000000	0.839380	1.099067	1.298376	1.531342	1.725269

The distance matrix

\# R has a built-in function to compute a full distance matrix
> distances <- dist(M.norm, method="euclidean")
> round(distances, 2)
boat cat cup dog knife
cat 1.56
cup 0.731 .43
dog 1.530 .841 .30
knife 0.771 .700 .931 .73
$\begin{array}{lllllll}\text { pig } & 1.80 & 0.80 & 1.74 & 1.10 & 1.69\end{array}$
\# If you want to search nearest neighbours, convert triangular distance \# matrix to full symmetric matrix and extract distance vectors from rows
> dist.matrix <- as.matrix(distances)
> sort(dist.matrix["dog",])

dog	cat	pig	cup	boat	knife
0.000000	0.839380	1.099067	1.298376	1.531342	1.725269

Clustering and semantic maps

\# Distance matrix is also the basis for a cluster analysis
> plot(hclust(distances))
\# Visualisation as semantic map by projection into 2-dimensional space;
\# uses non-linear multidimensional scaling (MDS)
> library (MASS)
> M.mds <- isoMDS(distances)\$points
initial value 2.611213
final value 0.000000
converged
\# Plot works in the same way as for the two selected dimensions above
> plot(M.mds, pch=20, col="red", main="Semantic map",

+ $x l a b=" D i m 1 ", ~ y l a b=" D i m ~ 2 ") ~$
> text(M.mds, labels=rownames(M.mds), pos=3)

Clustering and semantic maps

