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Measuring distance

o Distance between vectors
u,v € R"” = (dis)similarity
of data points

> u=(ug,...,uUp)
»v=(vi,...,Vp)

e Euclidean distance d5 (u, v)

o "“City block” Manhattan
distance di (u,v)

@ Both are special cases of the
Minkowski p-distance dp (u,v)
(for p € [1,00])

1
dp (u,v) = (Jur —valP + - + [un — valP) /p
doo (u,v) = max{|uy — va|,...,|un — val}
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Length & distance RIECTeISTT)]

Geometry and meaning

@ So far: apply vector methods and matrix algebra to DSMs
@ Geometric intuition: distance ~ semantic (dis)similarity

> nearest neighbours

> clustering

> semantic maps

> representation for connectionist models

= We need a mathematical notion of distance!
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Metric: a measure of distance

@ A metric is a general measure of the distance d (u,v) between

points u and v, which satisfies the following axioms:
d(u,v) = d(v,u)

d(u,v) >0foru#v

d(u,u)=0

d(u,w) < d(u,v) + d(v,w) (triangle inequality)

v

vvYyy

@ Metrics form a very broad class of distance measures, some of

which do not fit in well with our geometric intuitions
o E.g., metric need not be translation-invariant

d(u+x,v+x)#d(uv)
@ Another unintuitive example is the discrete metric

0 u=v

d(uv)= 1 u#v
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(R WIARCIS NI Vector norms

Distance vs. norm

@ Intuitively, distance X,
d (u,v) should correspond Gf‘_ lal = d(@0)
to length |ju — v|| of
displacement vector u —v T
. ) 1 d(@,9) = i - 7
» d(u,v) is a metric 4
> |lu—v]| is a norm s
> |lull = d(u,0) Nl v
@ Such a metric is always 4 o
translation-invariant ~ Il :,d(v’?) -~
T T T T T Lt
1 3 04 5 6 N
] dp (U,V) - ||V - u||p origin
e Minkowski p-norm for p € [1, cq]:
1/p
lullo = (al? + -+ + luaf?)
30 July 2009

Norm: a measure of length

. . @ Visualisation of norms in
Unit circle according to p—norm

. R? by plotting unit circle
_{7 for each norm, i.e. points
2l/Z8 u with fJuf| =1
. e Here: p-norms |-||, for
different values of p
? 7 @ Triangle inequality <—
s | unit circle is convex
4o s o0 05 10 @ This shows that p-norms

% with p < 1 would violate
the triangle inequality

o Consequence for DSM: p > 2 "favours” small differences in
many coordinates, p < 2 differences in few coordinates
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(RSP WARCIEENIEN  Vector norms

Norm: a measure of length

@ A general norm |luf| for the length of a vector u must satisfy
the following axioms:

> |lu] >0foru#£0
> || Au|| = |A] - Ju|| (homogeneity, not req’d for metric)
> |ju+v| <|lu|| +]|v| (triangle inequality)

@ every norm defines a translation-invariant metric

d(u,v) := [lu—v]|
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Vector norms
Operator and matrix norm

@ The norm of a linear map (or “operator”) f: U — V
between normed vector spaces U and V is defined as

1] := max{[[f(u)[ [u € U, [lu] =1}
» ||f]| depends on the norms chosen in U and V!
@ The definition of the operator norm implies

IF (Il < {IF]] - ull

@ Norm of a matrix A = norm of corresponding map f
» NB: this is not the same as a p-norm of A in Rk™"
» spectral norm induced by Euclidean vector norms

in U and V = largest singular value of A (= SVD)
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(R WIARCIS NI Vector norms

Which metric should | use?

@ Choice of metric or norm is one of the parameters of a DSM
@ Measures of distance between points:
> intuitive Euclidean norm ||-||2
“city-block” Manhattan distance |-|1
maximum distance ||-||oo
general Minkowski p-norm |||/,
and many other formulae ...

vVYyVvyy

@ Measures of the similarity of arrows:
» “cosine distance” ~ vy + -+ UpV,
> Dice coefficient (matching non-zero coordinates)
» and, of course, many other formulae ...
1= these measures determine angles between arrows
@ Similarity and distance measures are equivalent!
1= |'m a fan of the Euclidean norm because of its intuitive

geometric properties (angles, orthogonality, shortest path, . ..)
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with R
Norms & distance measures in R

# Define functions for general Minkowski norm and distance;
# parameter p is optional and defaults to p = 2

> p.norm <- function (x, p=2) (sum(abs(x) p))~(1/p)
> p.dist <- function (x, y, p=2) p.norm(x - y, p)

> round(apply(M, 1, p.norm, p=1), 2)
boat cat cup dog knife pig
125 150 121 300 158 70
> round(apply(M, 1, p.norm, p=2), 2)
boat cat cup dog knife pig
74.48 82.53 99.20 152.83 100.33 35.44
> round(apply(M, 1, p.norm, p=4), 2)
boat cat cup dog knife pig
61.93 66.10 98.01 122.71 86.78 28.31
> round(apply(M, 1, p.norm, p=99), 2)
boat cat cup dog knife pig
59 58 98 1156 84 27
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with R
Norms & distance measures in R

# We will use the cooccurrence matrix M from the last session
> print (M)
eat get hear kill see use
boat 0 59 4 0 39 23
cat 6 52 4 26 58 4
cup 1 98 2 0 14 6
dog 33 1156 42 17 83 10
knife 3 51 0 0 20 84
pig 9 12 2 27 17 3

# Note: you can save selected variables with the save () command,
# and restore them in your next session (similar to saving R's workspace)
> save(M, 0, E, M.mds, file="dsm_lab.RData")

# load() restores the variables under the same names!
> load("dsm_lab.RData")
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Norms & distance measures in R

# Here's a nice trick to normalise the row vectors quickly
> normalise <- function (M, p=2) M / apply(M, 1, p.norm, p=p)

# dist ) function also supports Minkowski p-metric

# (must normalise rows in order to compare different metrics)

> round(dist(normalise(M, p=1), method="minkowski", p=1), 2)
boat cat cup dog knife

cat 0.58

cup 0.69 0.97

dog 0.55 0.45 0.89

knife 0.73 1.01 1.01 1.00

pig 1.03 0.64 1.29 0.71 1.28

# Try different p-norms: how do the distances change?

> round(dist(normalise(M, p=2), method="minkowski", p=2), 2)

> round(dist(normalise(M, p=4), method="minkowski", p=4), 2)

> round(dist (normalise(M, p=99), method="minkowski", p=99), 2)
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with R Eucidean geometry
Why it is important to normalise vectors Euclidean norm & inner product

before computing a distance matrix

@ The Euclidean norm |Julj2 = /{(u, u) is special because it can

Two dimensions of English V-Obj DSM be derived from the inner product:

o (uv) ==xTy = xiy1 + - + Xa¥n
knife where u =g x and v = y are the standard coordinates of u
8 7 and v (certain other coordinate systems also work)
> 8 @ The inner product is a positive definite and symmetric
. bilinear form with the following properties:
N > (Au, v) (u, Av) = A(u,v)
. boat > (utu'v) = (u,v) + (U, v)
" dog - v V) = (uv) + (u,v)
gat > (u,v) = (v,u) (symmetric)
° ‘ ! ! ‘ ‘ ‘ > (u,u) = ||u||2 > 0 for u # 0 (positive definite)
0 20 40 60 80 100 120
» also called dot product or scalar product
get
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Euclidean geometry Euclidean geometry
Angles and orthogonality Cosine similarity in R
@ The Euclidean inner product has an important geometric The dist () function does not calculate the cosine measure
interpretation = angles and orthogonality (because it is a similarity rather than distance value), but:
o Cauchy-Schwarz inequality: o u®
u(2) e . . .
[(u,v)| < ] - v M.-MT — Ju® 4@ g0
@ Angle ¢ between vectors u,v € R": )
(u,v)
cos ¢ 1= ———— Ty _ i j
full V] =~ (M-M7); = (u,u)
> cos ¢ is the “cosine similarity” measure
@ u and v are orthogonal iff <u,v) =0 # Matrix of cosine similarities between rows of M:

> M.norm <- normalise(M, p=2) # only works with Euclidean norm!

> the shortest connection between a point u and a subspace U o
> M.norm %*% t(M.norm)

is orthogonal to all vectors v € U
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Eucldean geometry
Euclidean distance or cosine similarity?

@ Which is better, Euclidean distance or cosine similarity?

@ They are equivalent: if vectors are normalised (|lul2 = 1),
both lead to the same neighbour ranking

d2 (u,v) = /[lu—v[l2 = v {u—v,u—v)
=/ {(u,u) + (v,v) — 2 (u,v)
= Vllull2 + [lvl2 — 2 {u,v)
=4/2—2cos¢
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Eucidean geometry
Cartesian coordinates

o A set of vectors b ... b(" s called orthonormal if the
vectors are pairwise orthogonal and of unit length:

» (bW, b)) =0 for j # k
> (b, b)) = ||b(k>”2 =1
@ An orthonormal basis and the corresponding coordinates are
called Cartesian

o Cartesian coordinates are particularly intuitive, and the inner
product has the same form wrt. every Cartesian basis B: for
u=gx and v=gy', we have

(uv) = ()Y =x{y + -+ Xy

@ NB: the column vectors of the matrix B are orthonormal

> recall that the columns of B specify the standard coordinates
of the vectors b3, ... b(™
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Eulidean geometry
Euclidean distance and cosine similarity

Two dimensions of English V-Obj DSM

o
< 4
-
o
S
-

knife
o |
@
&
S 84 . a
o |
<+
boat
Q
dog
cat
°© T T T T T T
0 20 40 60 80 100 120
get
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Euclidean geometry
Orthogonal projection

o Cartesian coordinates u =g x can easily be computed:

W\ _ (S opl) po)
<u,b > <;ij b >
- ;XJ <b(f),b(k)> — X

—_———
=0k

» Kronecker delta: § =1 for j = k and 0 for j # k

@ Orthogonal projection Py : R” — V to subspace
V :=sp (bM),....b) (for k < n) is given by

k

Pyu:=3 b0 <u,b<f)>

J=1

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra
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Orientation Normal vector

Hyperplanes & normal vectors

A hyperplane is the decision boundary of a linear classifier!

@ A hyperplane U C R" through the origin 0 can be
characterized by the equation
U={ueR"|(un)=0}

for a suitable n € R" with ||n|| =1
@ n is called the normal vector of U
@ The orthogonal projection Py into U is given by

Pyv:=v —n{v,n)

@ An arbitrary hyperplane ' C R" can analogously be
characterized by

Fr={ueR"|(un)=a}
where a € R is the (signed) distance of ' from 0

30 July 2009

Isometric maps

@ An endomorphism f : R” — R" is called an isometry iff
(f(u), f(v)) = (u,v) for all u,v € R"

o Geometric interpretation: isometries preserve angles and
distances (which are defined in terms of (-,-))

o f is an isometry iff its matrix A is orthogonal

o Coordinate transformations between Cartesian systems are
isometric (because B and B™! = B are orthogonal)

@ Every isometric endomorphism of R” can be written as a
combination of planar rotations and axial reflections in a
suitable Cartesian coordinate system

cos¢p 0 —sing 1 0 O
RIM=10 1 0o |, @@=o -1 0
sing 0 cos¢ 0 0 1
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ometic maps
Orthogonal matrices

@ A matrix A whose column vectors are orthonormal is called
an orthogonal matrix

o A’ is orthogonal iff A is orthogonal

@ The inverse of an orthogonal matrix is simply its transpose:
Al =AT if Ais orthogonal

» it is easy to show AT A = | by matrix multiplication,
since the columns of A are orthonormal

» since AT is also orthogonal, it follows that
AAT = (AT)TAT =1

» side remark: the transposition operator -7 is called
an involution because (AT)" = A

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra
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Summary: orthogonal matrices

@ The column vectors of an orthogonal n x n matrix B form a
Cartesian basis b, ... b(" of R”

o B 1=B7,ie.wehave B'B=BB’ =1
@ The coordinate transformation BT into B-coordinates is an
isometry, i.e. all distances and angles are preserved

@ The first kK < n columns of B form a Cartesian basis of a
subspace V = sp (b, ... bK) of R"

o The corresponding rectangular matrix B = [b(), ... b(¥]
performs an orthogonal projection into V:
Pyu =p B'x

=F EBTX

(for u =g x)

w These properties will become important later today!

30 July 2009
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Generl iner product
General inner products

o Can we also introduce geometric notions such as angles and
orthogonality for other metrics, e.g. the Manhattan distance?

= norm must be derived from appropriate inner product

@ General inner products are defined by
(uv)g = ()TY =Xy + -+ Xy
wrt. non-Cartesian basis B (u =g x', v =g y’)

@ (-,-)g can be expressed in standard coordinates u =¢ x,
v = y using the transformation matrix B:

(wv)p = ()Ty = (B7x) " (B7y)
=x"(B1)TB ly=:x"Cy
30 July 2009

General inner products

An example:

o b(M) =(3,2), b? =(1,2)
1

_1

4

_1 §]
2 4

5 -5
€= [—.5 .625}

Graph shows unit circle
of the inner product C,
i.e. points x with

o8|

N W
N
—

N[ =

o8|

x'Cx=1
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Generl innr prouce
General inner products

o The coefficient matrix C := (B~!) "B~ of the general inner
product is symmetric

CT — (Bfl)T((Bfl)T)T _ (Bfl)TBfl =C
and positive definite

x"Cx = (B™'x) T(B_lx) =(x)"x'>0

o It is (relatively) easy to show that every positive definite and
symmetric bilinear form can be written in this way.

= j.e. every norm that is derived from an inner product can be
expressed in terms of a coefficient matrix C or basis B

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra
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General inner products

o C is a symmetric matrix

@ There is always an
orthonormal basis such
that C has diagonal form

@ “Standard” dot product
with additional scaling
factors (wrt. this
orthonormal basis)

@ Intuition: unit circle is a
squashed and rotated disk

w FEvery “geometric’ norm is equivalent to the Euclidean norm
except for a rotation and rescaling of the axes

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra
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Motivation and example data
Motivating latent dimensions: example data

@ Example: term-term matrix b .

. , noun uy se

@ V-Obj cooc's extracted from BNC bond 028 077

> targets = noun lemmas cigarette | -0.52  0.44

> features = verb lemmas dress 0.51 -1.30

o feature scaling: association scores freehold | -0.01 -0.08

ure scaling: - latior land 113 154

(modified log Dice coefficient) number | -1.05 -1.02

@ k=111 nouns with f > 20 per -0.35  -0.16

(must have non-zero row vectors) pub -0.08-1.30

share 1.92  1.99

@ n =2 dimensions: buy and sell system -1.63  -0.70
30 July 2009 30 /48

PCA Motivation and example data

Motivating latent dimensions & subspace projection

@ The latent property of being a commodity is “expressed”
through associations with several verbs: sell, buy, acquire, . ..

o Consequence: these DSM dimensions will be correlated

o Identify latent dimension by looking for strong correlations
(or weaker correlations between large sets of features)

@ Projection into subspace V of k < n latent dimensions
as a “noise reduction” technique = LSA
@ Assumptions of this approach:
> “latent” distances in V are semantically meaningful

» other “residual” dimensions represent chance co-occurrence
patterns, often particular to the corpus underlying the DSM

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009
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Morivation and example data
Motivating latent dimensions & subspace projection

good
copy
ticket
< share
progsgerty
liquor land
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asset car
™ stock
bond book
. insurancg g, n
advertising Clgar:ggﬁag%wﬂ%{)%
Spay ke
% somm&%‘ Sr%aﬂa ua% q\othe
» collection béditure Ui enf
~ am - range security mmfe drink ood
work i freg Wﬂé bottl
ottle
part Bnce, , shotPiPer
ENHR! E;é%gg‘@g packet
e
system 2 fower
king place  0%e! pair
“ number pread
year pq‘ggca:rtyg, "
Bl Coupledress
bag
time
suit
(=]
T T T T T
0 1 2 3 4
buy
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PCA Motivation and example data
The latent “commodity” dimension
good
copy
ticket
< share
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house
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ban book
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seal fre
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- b read
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time i
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o
T T T T T
0 1 2 3 4
buy
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Caleuating variace

Caleuating variance

o Rationale: find the dimensions that give the best (statistical)
explanation for the variance (or “spread”) of the data
@ Definition of the variance of a set of vectors

@ Uncentered

data set
1= you remember the equations for one-dimensional data, right?
k
1 ) o Centered
2_ - i) _ 2
T = k—1 ZHX | data set
i=1
k .
o= 1 Zx(i) @ Variance of
k — centered data

o Easier to calculate if we center the data so that =0

Centering the data set Centering the data set
@ Uncentered @ Uncentered
data set 1 data set
o Centered o o o Centered
data set - ) SR data set
@ Variance of “ _ -"'_-jf,.-_-f\-. ' @ Variance of
centered data P centered data

buy

k

2 )12

T T T T o = ﬁz”x(l)”
i=1

sell

sell

Calculting variance
The variance of a data set Centering the data set

buy
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Caleisting vrince

variance = 1.26

-2 -1 0 1 2
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Prsjcton
Principal components analysis (PCA)

@ We want to project the data points to a lower-dimensional
subspace, but preserve distances as well as possible

@ Insight 1: variance = average squared distance
1 k  k P
- - () _x)2 = = (D)2 = 242
k(k—l)ZZ”x = =g 2 IO =20
i=1 j=1 i=1
@ Insight 2: orthogonal projection always reduces distances

- difference in squared distances = loss of variance

If we reduced the data set to just a single dimension, which
dimension would still have the highest variance?
@ Mathematically, we project the points onto a line through the
origin and calculate one-dimensional variance on this line

» we'll see in a moment how to compute such projections

> but first, let us look at a few examples

20 Jly 2009
H@.N8  Projection
Projection and preserved variance: examples
5 o \ A\ \ \\

C variance = 0.72

T T T T T

-2 -1 0 1 2

buy
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Projction

Projection and preserved variance: examples

sell

variance = 0.36

-2 -1 0 1 2
buy
Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009
H@\Y Projection
Projection and preserved variance: examples
~ 4
-
3 o-
=
1
&
variance = 0.9
T T T T T
-2 -1 0 1 2
buy
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Projecton
The mathematics of projections

@ Line through origin given
by unit vector ||v|| =1

@ For a point x and the
corresponding unit vector % 4
x' = x/||x]|, we have I=1!

Py %= (%,9)7
71 =1

cosp = (X', v)

@ Trigonometry: position of projected point on the line is
[1x[| - cos o = [|x[| - {x',v) = (x,v)

@ Preserved variance = one-dimensional variance on the line
(note that data set is still centered after projection)

k

2 1 2
o5 =——=>Y (xi,v)
v 1
k—1¢4
i=1
Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009

The covariance matrix

@ C is the covariance matrix of the data points
» Cis a square n X n matrix (2 X 2 in our example)
@ Preserved variance after projection onto a line v can easily be
calculated as 02 = v Cv
@ The original variance of the data set is given by
02=1r(C)=Ci1+ G2+ + Can

2
o G2 - Cin
2
G103
C=
Cnfl,n
Cnl Cn,n—l On

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009
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Covariance matrix
The covariance matrix

e Find the direction v with maximal o2, which is given by:

i=1
=v'Cv
Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009

@\ The PCA algorithm

Maximizing preserved variance

@ In our example, we want to find the axis vj that preserves the

largest amount of variance by maximizing v{ Cv;
@ For higher-dimensional data set, we also want to find the
axis v with the second largest amount of variance, etc.
1 Should not include variance that has already been accounted
for: v, must be orthogonal to vy, i.e. {vi,v) =0

o Orthogonal dimensions v(¥),v(®) ... partition variance:
2 _ 2 2
0" =0,0) T 0y, +---

@ Useful result from linear algebra: every symmetric matrix
C = C7 has an eigenvalue decomposition with orthogonal
eigenvectors aj,ay,...,a, and corresponding eigenvalues
A1 > A= 2 Ap

30 July 2009

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra

39 /48

41/ 48



The PCA algorithm
Eigenvalue decomposition

@ The eigenvalue decomposition of C can be written in the form

C=u-D-U"
where U is an orthogonal matrix of eigenvectors (columns)
and D = Diag()1,...,A,) a diagonal matrix of eigenvalues
A
A2
U=|[a; a - a, D=
An

> note that both U and D are n x n square matrices

Evert & Lenci (ESSLLI 2009) 30 July 2009

H@.88  The PCA algorithm

The PCA algorithm

@ In order to find the dimension of second highest variance,
we have to look for an axis v orthogonal to a;

i UT is orthogonal, so the coordinates y = U7 v must be
orthogonal to first axis [1,0,...,0]7, i.e. y = [0,y2,...,yn] "

@ In other words, we have to maximize
viCv= )‘2()’2)2 st /\n(yn)2

under constraints y; = 0 and (y2)2 +--- + (yn)? =1
@ Again, solution is y = [0,1,0,...,0]”, corresponding to the
second eigenvector v = ap and preserved variance 03 = A

@ Similarly for the third, fourth, ... axis

Evert & Lenci (ESSLLI 2009) 30 July 2009

The PCA sgorithm
The PCA algorithm

With the eigenvalue decomposition of C, we have

o2=v Cv=v'UDU'v=(U"v)"D(U"v) =y Dy
where y = U'v = [y1,y2,...,y,] " are the coordinates of v in
the Cartesian basis formed by the eigenvectors of C

|yl = 1 since U7 is an isometry (orthogonal matrix)

We therefore want to maximize
vICv = 1(y1)? + Xa(y2)® - + An(yn)®

under the constraint (y1)2 + (y2)2 + -+ (yn)? =1
Solution: y = [1,0,...,0]7 (since A is the largest eigenvalue)

This corresponds to v = a; (the first eigenvector of C) and a
preserved amount of variance given by 02 = alTCal =)\

Evert & Lenci (ESSLLI 2009) 30 July 2009 43 / 48

@\ The PCA algorithm

The PCA algorithm

The eigenvectors a; of the covariance matrix C are called the
principal components of the data set

The amount of variance preserved (or “explained”) by the i-th
principal component is given by the eigenvalue \;

Since A\1 > A\ > -+ > A, the first principal component
accounts for the largest amount of variance etc.

Coordinates of a point x in PCA space are given by U'x
(note: these are the projections on the principal components)
For the purpose of “noise reduction”, only the first ' < n
principal components (with highest variance) are retained, and
the other dimensions in PCA space are dropped

= j.e. data points are projected into the subspace V spanned by
the first n’ column vectors of U
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The PCA slgorithm

PCA example

copy - good
: icket
T prod'uc.t s.h;\re
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30 July 2009
H@N with R
PCA in R
# Coordinates in PCA space
> pca$x[c("house", "book","arm","time"), ]
PC1 PC2
house -2.1390957 0.5274687
book -1.1864783 0.3797070
arm 0.9141092 -1.3080504
time 1.8036445 0.1387165
# Transformation matrix U
> pca$rotation
PC1 PC2
buy -0.5907416 0.8068608
sell -0.8068608 -0.5907416
# Eigenvalues of the covariance matrix C
> (pca$sdev) "2
[1] 0.8970602 0.3583299
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HEN with R

PCA in R

> pca <- prcomp(M) # for the buy/sell example data
> summary(pca)
Importance of components:
PC1  PC2
Standard deviation 0.947 0.599
Proportion of Variance 0.715 0.285
Cumulative Proportion 0.715 1.000

> print(pca)
Standard deviations:
[1] 0.9471326 0.5986067

Rotation:

PC1 PC2
buy -0.5907416 0.8068608
sell -0.8068608 -0.5907416
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