Geometric methods in vector spaces Distributional Semantic Models

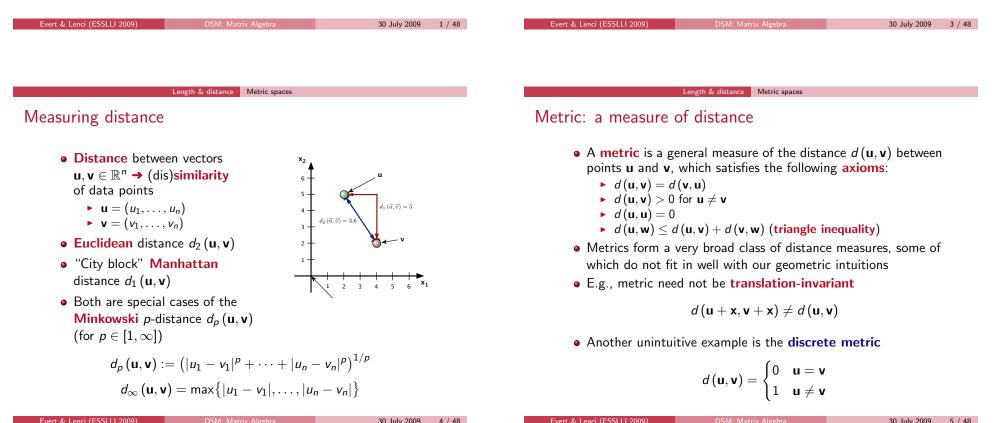
Stefan Evert¹ & Alessandro Lenci²

¹University of Osnabrück, Germany ²University of Pisa, Italy

SSLLI'09

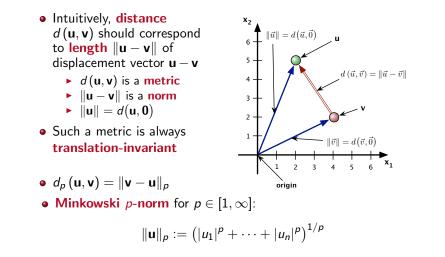
Geometry and meaning

- So far: apply vector methods and matrix algebra to DSMs
- Geometric intuition: distance \simeq semantic (dis)similarity
 - nearest neighbours
 - clustering
 - semantic maps
 - representation for connectionist models
- We need a mathematical notion of distance!



ength & distance Vector norms

Distance vs. norm



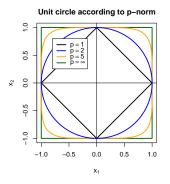
Norm: a measure of length

- A general **norm** $||\mathbf{u}||$ for the length of a vector **u** must satisfy the following **axioms**:
 - $\|\mathbf{u}\| > 0$ for $\mathbf{u} \neq \mathbf{0}$
 - $\|\lambda \mathbf{u}\| = |\lambda| \cdot \|\mathbf{u}\|$ (homogeneity, not req'd for metric)
 - ▶ $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (triangle inequality)
- every norm defines a translation-invariant metric

 $d(\mathbf{u},\mathbf{v}) := \|\mathbf{u} - \mathbf{v}\|$

Evert & Lenci (ESSLLI 2009)	DSM: Matrix Algebra	30 July 2009 6 / 48	Evert & Lenci (ESSLLI 2009)	DSM: Matri	× Algebra	30 July 2009	7 / 48
	Length & distance Vector norms			Length & distance	Vector norms		

Norm: a measure of length



- Visualisation of norms in \mathbb{R}^2 by plotting **unit circle** for each norm, i.e. points **u** with $\|\mathbf{u}\| = 1$
- Here: *p*-norms ||·||_p for different values of *p*
- Triangle inequality unit circle is convex
- This shows that *p*-norms with *p* < 1 would violate the triangle inequality
- Consequence for DSM: p ≫ 2 "favours" small differences in many coordinates, p ≪ 2 differences in few coordinates

Operator and matrix norm

 The norm of a linear map (or "operator") f : U → V between normed vector spaces U and V is defined as

 $\|f\| := \max \{ \|f(\mathbf{u})\| \, | \, \mathbf{u} \in U, \|\mathbf{u}\| = 1 \}$

- ||f|| depends on the norms chosen in U and V!
- The definition of the operator norm implies

 $\|f(\mathbf{u})\| \le \|f\| \cdot \|\mathbf{u}\|$

- Norm of a matrix $\mathbf{A} = \text{norm of corresponding map } f$
 - ▶ NB: this is not the same as a *p*-norm of **A** in $\mathbb{R}^{k \cdot n}$
 - spectral norm induced by Euclidean vector norms in U and V = largest singular value of A (→ SVD)

Which metric should I use?

- Choice of metric or norm is one of the parameters of a DSM
- Measures of **distance** between points:
 - intuitive Euclidean norm $\|\cdot\|_2$
 - "city-block" Manhattan distance $\|\cdot\|_1$
 - ► maximum distance $\|\cdot\|_{\infty}$
 - ▶ general Minkowski *p*-norm $\|\cdot\|_p$
 - ▶ and many other formulae ...
- Measures of the similarity of arrows:
 - "cosine distance" $\sim u_1 v_1 + \cdots + u_n v_n$
 - Dice coefficient (matching non-zero coordinates)
 - ▶ and, of course, many other formulae
 - these measures determine **angles** between arrows
- Similarity and distance measures are equivalent!
 - I'm a fan of the Euclidean norm because of its intuitive geometric properties (angles, orthogonality, shortest path, ...)

30 July 2009

Norms & distance measures in R

We will use the cooccurrence matrix $\boldsymbol{\mathsf{M}}$ from the last session > print(M)

	eat	get	hear	kill	see	use	
boat	0	59	4	0	39	23	
cat	6	52	4	26	58	4	
cup	1	98	2	0	14	6	
dog	33	115	42	17	83	10	
knife	3	51	0	0	20	84	
pig	9	12	2	27	17	3	
	cat cup dog knife	boat0cat6cup1dog33knife3	boat 0 59 cat 6 52 cup 1 98 dog 33 115 knife 3 51	boat 0 59 4 cat 6 52 4 cup 1 98 2 dog 33 115 42 knife 3 51 0	boat05940cat652426cup19820dog331154217knife35100	boat0594039cat65242658cup1982014dog33115421783knife3510020	cat 6 52 4 26 58 4 cup 1 98 2 0 14 6 dog 33 115 42 17 83 10 knife 3 51 0 0 20 84

Note: you can save selected variables with the save() command, # and restore them in your next session (similar to saving R's workspace) > save(M, O, E, M.mds, file="dsm_lab.RData")

load() restores the variables under the same names!

> load("dsm_lab.RData")

vert & Lenci (ESSLLI 2

DSM: Matrix Alg

30 July 2009 11 / 48

Length & distance with R

Norms & distance measures in R

<pre># Define functions for general Minkowski norm and distance; # parameter p is optional and defaults to p = 2 > p.norm <- function (x, p=2) (sum(abs(x)^p))^(1/p) > p.dist <- function (x, y, p=2) p.norm(x - y, p)</pre>
<pre>> round(apply(M, 1, p.norm, p=1), 2)</pre>
boat cat cup dog knife pig
125 150 121 300 158 70
<pre>> round(apply(M, 1, p.norm, p=2), 2)</pre>
boat cat cup dog knife pig
74.48 82.53 99.20 152.83 100.33 35.44
<pre>> round(apply(M, 1, p.norm, p=4), 2)</pre>
boat cat cup dog knife pig
61.93 66.10 98.01 122.71 86.78 28.31
<pre>> round(apply(M, 1, p.norm, p=99), 2)</pre>
boat cat cup dog knife pig
59 58 98 115 84 27

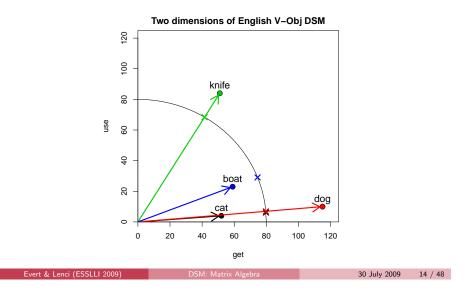
Length & distance with R

Norms & distance measures in R

<pre># Here's a nice trick to normalise the row vectors quickly > normalise <- function (M, p=2) M / apply(M, 1, p.norm, p=p)</pre>						
<pre># dist() function also supports Minkowski p-metric # (must normalise rows in order to compare different metrics) > round(dist(normalise(M, p=1), method="minkowski", p=1), 2)</pre>						
boat cat cup dog knife						
cat 0.58						
cup 0.69 0.97						
dog 0.55 0.45 0.89						
knife 0.73 1.01 1.01 1.00						
pig 1.03 0.64 1.29 0.71 1.28						
<pre># Try different p-norms: how do the distances change? > round(dist(normalise(M, p=2), method="minkowski", p=2), 2)</pre>						
<pre>> round(dist(normalise(M, p=4), method="minkowski", p=4), 2)</pre>						

> round(dist(normalise(M, p=99), method="minkowski", p=99), 2)

Why it is important to normalise vectors before computing a distance matrix



Euclidean norm & inner product

• The Euclidean norm $\|\mathbf{u}\|_2 = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$ is special because it can be derived from the **inner product**:

$$\langle \mathbf{u}, \mathbf{v} \rangle := \mathbf{x}^T \mathbf{y} = x_1 y_1 + \dots + x_n y_n$$

where $\mathbf{u} \equiv_E \mathbf{x}$ and $\mathbf{v} \equiv_E \mathbf{y}$ are the standard coordinates of \mathbf{u} and \mathbf{v} (certain other coordinate systems also work)

- The inner product is a **positive definite** and **symmetric** bilinear form with the following properties:
 - $\langle \lambda \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \lambda \mathbf{v} \rangle = \lambda \langle \mathbf{u}, \mathbf{v} \rangle$
 - $\langle \mathbf{u} + \mathbf{u}', \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}', \mathbf{v} \rangle$
 - $\langle \mathbf{u}, \mathbf{v} + \mathbf{v}' \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{v}' \rangle$
 - $\flat \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle \text{ (symmetric)}$
 - $\langle \mathbf{u}, \mathbf{u} \rangle = \|\mathbf{u}\|^2 > 0$ for $\mathbf{u} \neq \mathbf{0}$ (positive definite)
 - also called dot product or scalar product

Orientation Euclidean geometry

Angles and orthogonality

- The Euclidean inner product has an important geometric interpretation \rightarrow angles and orthogonality
- Cauchy-Schwarz inequality:

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \cdot \|\mathbf{v}\|$$

• Angle ϕ between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$:

$$\cos\phi:=\frac{\langle \mathbf{u},\mathbf{v}\rangle}{\|\mathbf{u}\|\cdot\|\mathbf{v}\|}$$

- \blacktriangleright cos ϕ is the "cosine similarity" measure
- **u** and **v** are **orthogonal** iff $\langle \mathbf{u}, \mathbf{v} \rangle = 0$
 - the shortest connection between a point u and a subspace U is orthogonal to all vectors $\mathbf{v} \in U$

Orientation Euclidean geometry

Cosine similarity in R

Evert & Lenci (ESSLLI 2009)

The dist() function does not calculate the cosine measure (because it is a similarity rather than distance value), but:

Matrix of cosine similarities between rows of M:

- > M.norm <- normalise(M, p=2) # only works with Euclidean norm!
- > M.norm %*% t(M.norm)

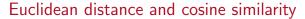
30 July 2009

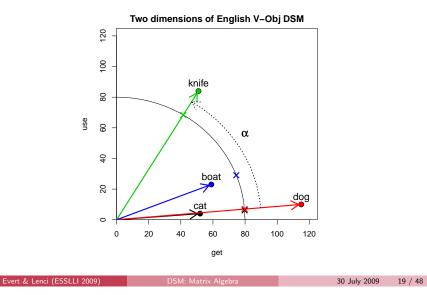
Orientation Euclidean geometry

Euclidean distance or cosine similarity?

- Which is better, Euclidean distance or cosine similarity?
- They are equivalent: if vectors are normalised ($\|\mathbf{u}\|_2 = 1$), both lead to the same neighbour ranking

$$d_{2}(\mathbf{u}, \mathbf{v}) = \sqrt{\|\mathbf{u} - \mathbf{v}\|_{2}} = \sqrt{\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle}$$
$$= \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle - 2 \langle \mathbf{u}, \mathbf{v} \rangle}$$
$$= \sqrt{\|\mathbf{u}\|_{2} + \|\mathbf{v}\|_{2} - 2 \langle \mathbf{u}, \mathbf{v} \rangle}$$
$$= \sqrt{2 - 2 \cos \phi}$$





vert & Lenci (ESSLLI 2009)

ra 30 July 2009

Orientation Euclidean geometry

Cartesian coordinates

• A set of vectors $\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(n)}$ is called **orthonormal** if the vectors are pairwise orthogonal and of unit length:

•
$$\langle \mathbf{b}^{(j)}, \mathbf{b}^{(k)} \rangle = 0$$
 for $j \neq k$

•
$$\langle \mathbf{b}^{(k)}, \mathbf{b}^{(k)} \rangle = \|\mathbf{b}^{(k)}\|^2 = 1$$

- An orthonormal basis and the corresponding coordinates are called **Cartesian**
- Cartesian coordinates are particularly intuitive, and the inner product has the same form wrt. every Cartesian basis B: for u ≡_B x' and v ≡_B y', we have

$$\langle \mathbf{u}, \mathbf{v} \rangle = (\mathbf{x}')^T \mathbf{y}' = x_1' y_1' + \dots + x_n' y_n'$$

- NB: the column vectors of the matrix **B** are orthonormal
 - ▶ recall that the columns of B specify the standard coordinates of the vectors b⁽¹⁾,..., b⁽ⁿ⁾

Orientation Euclidean geometry

Orthogonal projection

• Cartesian coordinates $\mathbf{u} \equiv_B \mathbf{x}$ can easily be computed:

$$\left\langle \mathbf{u}, \mathbf{b}^{(k)} \right\rangle = \left\langle \sum_{j=1}^{n} x_j \mathbf{b}^{(j)}, \mathbf{b}^{(k)} \right\rangle$$
$$= \sum_{j=1}^{n} x_j \underbrace{\left\langle \mathbf{b}^{(j)}, \mathbf{b}^{(k)} \right\rangle}_{=\delta_{jk}} = x_k$$

- Kronecker delta: $\delta_{jk} = 1$ for j = k and 0 for $j \neq k$
- Orthogonal projection $P_V : \mathbb{R}^n \to V$ to subspace $V := \operatorname{sp}(\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(k)})$ (for k < n) is given by

$$P_V \mathbf{u} := \sum_{j=1}^k \mathbf{b}^{(j)} \left\langle \mathbf{u}, \mathbf{b}^{(j)} \right\rangle$$

Hyperplanes & normal vectors

A hyperplane is the decision boundary of a linear classifier!

 A hyperplane U ⊆ ℝⁿ through the origin 0 can be characterized by the equation

$$U = \left\{ \mathbf{u} \in \mathbb{R}^n \mid \langle \mathbf{u}, \mathbf{n} \rangle = 0 \right\}$$

for a suitable $\mathbf{n} \in \mathbb{R}^n$ with $\|\mathbf{n}\| = 1$

- **n** is called the **normal vector** of U
- The orthogonal projection P_U into U is given by

$$P_U \mathbf{v} := \mathbf{v} - \mathbf{n} \langle \mathbf{v}, \mathbf{n} \rangle$$

 An arbitrary hyperplane Γ ⊆ ℝⁿ can analogously be characterized by

$$\Gamma = \left\{ \mathbf{u} \in \mathbb{R}^n \mid \langle \mathbf{u}, \mathbf{n} \rangle = a \right\}$$

where $a \in \mathbb{R}$ is the (signed) **distance** of Γ from **0**

Evert & Lenci (ESSLLI 2009)

bra 30 July 2009

Orthogonal matrices

- A matrix **A** whose column vectors are orthonormal is called an **orthogonal** matrix
- **A**^T is orthogonal iff **A** is orthogonal
- The inverse of an orthogonal matrix is simply its transpose:

 $\mathbf{A}^{-1} = \mathbf{A}^T$ if \mathbf{A} is orthogonal

- it is easy to show A^TA = I by matrix multiplication, since the columns of A are orthonormal
- ► since \mathbf{A}^T is also orthogonal, it follows that $\mathbf{A}\mathbf{A}^T = (\mathbf{A}^T)^T \mathbf{A}^T = \mathbf{I}$
- ► side remark: the transposition operator ·^T is called an involution because (A^T)^T = A

Orientation Isometric maps

Summary: orthogonal matrices

Evert & Lenci (ESSLLI 2009)

- The column vectors of an orthogonal $n \times n$ matrix **B** form a Cartesian basis $\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(n)}$ of \mathbb{R}^n
- $\mathbf{B}^{-1} = \mathbf{B}^{T}$, i.e. we have $\mathbf{B}^{T}\mathbf{B} = \mathbf{B}\mathbf{B}^{T} = \mathbf{I}$
- The coordinate transformation **B**^T into *B*-coordinates is an isometry, i.e. all distances and angles are preserved
- The first k < n columns of **B** form a Cartesian basis of a subspace $V = \operatorname{sp}(\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(k)})$ of \mathbb{R}^n
- The corresponding rectangular matrix $\hat{\mathbf{B}} = [\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(k)}]$ performs an orthogonal projection into V:

$$P_{V}\mathbf{u} \equiv_{B} \hat{\mathbf{B}}^{T}\mathbf{x} \quad (\text{for } \mathbf{u} \equiv_{E} \mathbf{x})$$
$$\equiv_{E} \hat{\mathbf{B}}\hat{\mathbf{B}}^{T}\mathbf{x}$$

► These properties will become important later today!

• An endomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ is called an isometry iff $\langle f(\mathbf{u}), f(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

Orientation Isometric maps

- Geometric interpretation: isometries preserve angles and distances (which are defined in terms of ⟨·, ·⟩)
- f is an isometry iff its matrix **A** is orthogonal
- Coordinate transformations between Cartesian systems are isometric (because **B** and $\mathbf{B}^{-1} = \mathbf{B}^{T}$ are orthogonal)
- Every isometric endomorphism of \mathbb{R}^n can be written as a combination of **planar rotations** and **axial reflections** in a suitable Cartesian coordinate system

$$R_{\phi}^{(1,3)} = \begin{bmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{bmatrix}, \quad Q^{(2)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

22 / 48

30 July 2009

Orientation General inner product

General inner products

- Can we also introduce geometric notions such as angles and orthogonality for other metrics, e.g. the Manhattan distance?
 norm must be derived from appropriate inner product
- General inner products are defined by

$$\langle \mathbf{u}, \mathbf{v} \rangle_B := (\mathbf{x}')^T \mathbf{y}' = x'_1 y'_1 + \dots + x'_y y'_n$$

wrt. non-Cartesian basis B ($\mathbf{u} \equiv_B \mathbf{x}', \mathbf{v} \equiv_B \mathbf{y}'$)

• $\langle \cdot, \cdot \rangle_B$ can be expressed in standard coordinates $\mathbf{u} \equiv_E \mathbf{x}$, $\mathbf{v} \equiv_E \mathbf{y}$ using the transformation matrix **B**:

$$\langle \mathbf{u}, \mathbf{v} \rangle_B = (\mathbf{x}')^T \mathbf{y}' = (\mathbf{B}^{-1} \mathbf{x})^T (\mathbf{B}^{-1} \mathbf{y})$$

= $\mathbf{x}^T (\mathbf{B}^{-1})^T \mathbf{B}^{-1} \mathbf{y} =: \mathbf{x}^T \mathbf{C} \mathbf{y}$

General inner products

 The coefficient matrix C := (B⁻¹)^TB⁻¹ of the general inner product is symmetric

$$C^{T} = (B^{-1})^{T} ((B^{-1})^{T})^{T} = (B^{-1})^{T} B^{-1} = C$$

and positive definite

$$\mathbf{x}^{T}\mathbf{C}\mathbf{x} = (\mathbf{B}^{-1}\mathbf{x})^{T}(\mathbf{B}^{-1}\mathbf{x}) = (\mathbf{x}')^{T}\mathbf{x}' \ge 0$$

- It is (relatively) easy to show that every positive definite and symmetric bilinear form can be written in this way.
 - I.e. every norm that is derived from an inner product can be expressed in terms of a coefficient matrix C or basis B

Orientation General inner product

Evert & Lenci (ESSLLI 2009)

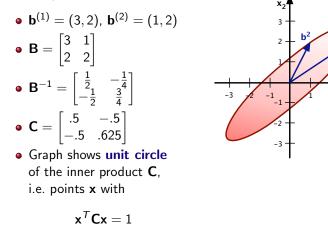
30 July 2009

26 / 48

Orientation General inner product

General inner products

An example:



General inner products

Evert & Lenci (ESSLLI 2009)

- C is a symmetric matrix
- There is always an orthonormal basis such that C has diagonal form
- "Standard" dot product with additional scaling factors (wrt. this orthonormal basis)
- Intuition: unit circle is a squashed and rotated disk
- Every "geometric" norm is equivalent to the Euclidean norm except for a rotation and rescaling of the axes

30 July 2009

Motivating latent dimensions: example data

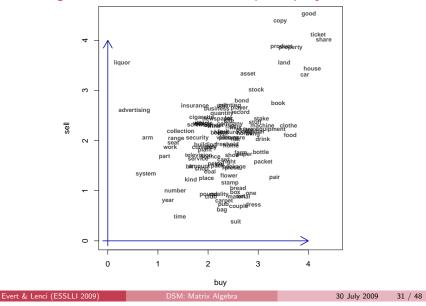
- Example: term-term matrix
- V-Obj cooc's extracted from BNC
 - ► targets = noun lemmas
 - features = verb lemmas
- feature scaling: association scores (modified log Dice coefficient)
- k = 111 nouns with f ≥ 20 (must have non-zero row vectors)
- *n* = 2 dimensions: *buy* and *sell*

noun	buy	sell
bond	0.28	0.77
cigarette	-0.52	0.44
dress	0.51	-1.30
freehold	-0.01	-0.08
land	1.13	1.54
number	-1.05	-1.02
per	-0.35	-0.16
pub	-0.08	-1.30
share	1.92	1.99
system	-1.63	-0.70

30 July 2009

30 / 48

Motivating latent dimensions & subspace projection



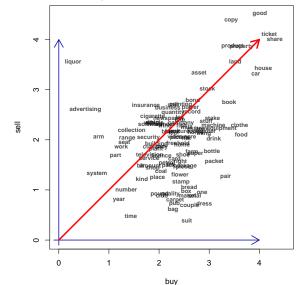
PCA Motivation and example data

Motivating latent dimensions & subspace projection

- The **latent property** of being a commodity is "expressed" through associations with several verbs: *sell, buy, acquire, ...*
- Consequence: these DSM dimensions will be correlated
- Identify **latent dimension** by looking for strong correlations (or weaker correlations between large sets of features)
- Projection into subspace V of k < n latent dimensions as a "noise reduction" technique → LSA
- Assumptions of this approach:
 - "latent" distances in V are semantically meaningful
 - other "residual" dimensions represent chance co-occurrence patterns, often particular to the corpus underlying the DSM

PCA Motivation and example data

The latent "commodity" dimension



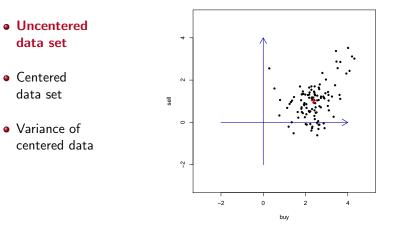
Evert & Lenci (ESSLLI 2009)

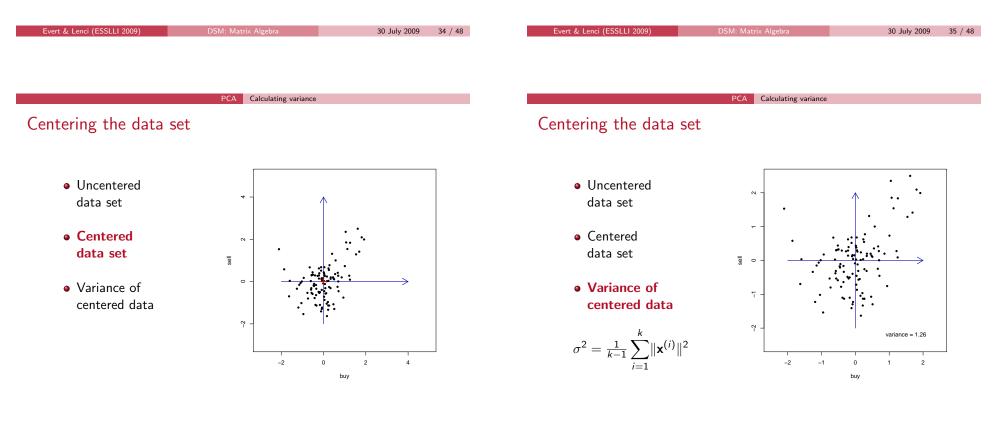
The variance of a data set

- Rationale: find the dimensions that give the best (statistical) explanation for the variance (or "spread") of the data
- Definition of the variance of a set of vectors
 - we you remember the equations for one-dimensional data, right?

$$\sigma^2 = \frac{1}{k-1} \sum_{i=1}^k \|\mathbf{x}^{(i)} - \boldsymbol{\mu}\|^2$$
$$\boldsymbol{\mu} = \frac{1}{k} \sum_{i=1}^k \mathbf{x}^{(i)}$$

• Easier to calculate if we **center** the data so that $\mu = \mathbf{0}$





PCA Projection

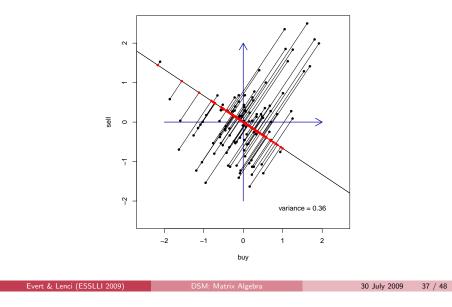
Principal components analysis (PCA)

- We want to project the data points to a lower-dimensional subspace, but preserve distances as well as possible
- Insight 1: variance = average squared distance

$$\frac{1}{k(k-1)}\sum_{i=1}^{k}\sum_{j=1}^{k}\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\|^{2} = \frac{2}{k-1}\sum_{i=1}^{k}\|\mathbf{x}^{(i)}\|^{2} = 2\sigma^{2}$$

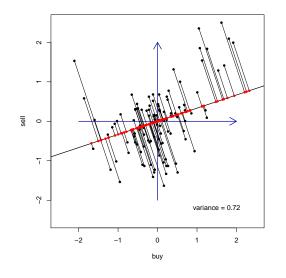
- Insight 2: orthogonal projection always reduces distances
 - \rightarrow difference in squared distances = loss of variance
- If we reduced the data set to just a single dimension, which dimension would still have the highest variance?
- Mathematically, we project the points onto a line through the origin and calculate one-dimensional variance on this line
 - ▶ we'll see in a moment how to compute such projections
 - but first, let us look at a few examples

Projection and preserved variance: examples



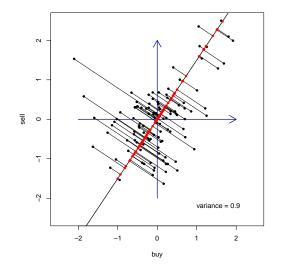
PCA Projection

Projection and preserved variance: examples



PCA Projection

Projection and preserved variance: examples



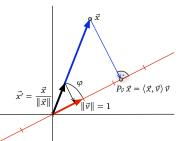
Evert & Lenci (ESSLLI 2009)

30 July 2009

PCA Projection

The mathematics of projections

- Line through origin given by unit vector ||v|| = 1
- For a point **x** and the corresponding unit vector $\mathbf{x}' = \mathbf{x}/||\mathbf{x}||$, we have $\cos \varphi = \langle \mathbf{x}', \mathbf{v} \rangle$



- Trigonometry: position of projected point on the line is $\|\mathbf{x}\| \cdot \cos \varphi = \|\mathbf{x}\| \cdot \langle \mathbf{x}', \mathbf{v} \rangle = \langle \mathbf{x}, \mathbf{v} \rangle$
- Preserved variance = one-dimensional variance on the line (note that data set is still centered after projection)

$$\sigma_{\mathbf{v}}^2 = \frac{1}{k-1} \sum_{i=1}^k \left< \mathbf{x}_i, \mathbf{v} \right>^2$$

Evert & Lenci (ESSLLI 2009)

30 July 2009

38 / 48

PCA Covariance matrix

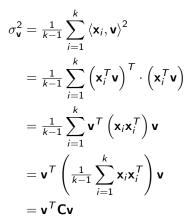
The covariance matrix

- C is the covariance matrix of the data points
 - C is a square $n \times n$ matrix (2 × 2 in our example)
- Preserved variance after projection onto a line ν can easily be calculated as σ²_ν = ν^TCν
- The original variance of the data set is given by $\sigma^2 = tr(\mathbf{C}) = C_{11} + C_{22} + \cdots + C_{nn}$

$$\mathbf{C} = \begin{pmatrix} \sigma_{1}^{2} & C_{12} & \cdots & C_{1n} \\ C_{21} & \sigma_{2}^{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & C_{n-1,n} \\ C_{n1} & \cdots & C_{n,n-1} & \sigma_{n}^{2} \end{pmatrix}$$

The covariance matrix

• Find the direction **v** with maximal $\sigma_{\mathbf{v}}^2$, which is given by:



Evert & Lenci (ESSLLI 2009)

trix Algebra

30 July 2009 39 / 48

PCA The PCA algorithm

Maximizing preserved variance

- In our example, we want to find the axis v₁ that preserves the largest amount of variance by maximizing v₁^TCv₁
- For higher-dimensional data set, we also want to find the axis \mathbf{v}_2 with the second largest amount of variance, etc.
 - Should not include variance that has already been accounted for: \mathbf{v}_2 must be orthogonal to \mathbf{v}_1 , i.e. $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$
- Orthogonal dimensions $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots$ partition variance:

$$\sigma^2 = \sigma^2_{\mathbf{v}^{(1)}} + \sigma^2_{\mathbf{v}^{(2)}} + \dots$$

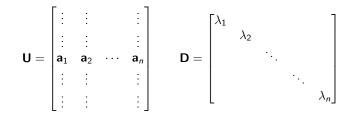
Useful result from linear algebra: every symmetric matrix
 C = C^T has an eigenvalue decomposition with orthogonal eigenvectors a₁, a₂,..., a_n and corresponding eigenvalues λ₁ ≥ λ₂ ≥ ··· ≥ λ_n

Eigenvalue decomposition

• The eigenvalue decomposition of C can be written in the form

 $\mathbf{C} = \mathbf{U} \cdot \mathbf{D} \cdot \mathbf{U}^{T}$

where **U** is an orthogonal matrix of eigenvectors (columns) and **D** = $Diag(\lambda_1, ..., \lambda_n)$ a diagonal matrix of eigenvalues



• note that both **U** and **D** are $n \times n$ square matrices

Evert & Lenci (ESSLLI 2009)	DSM: Matrix Algebra	30 July 2009	42 / 48

PCA The PCA algorithm

The PCA algorithm

- In order to find the dimension of second highest variance, we have to look for an axis v orthogonal to a₁
 - **W**^T is orthogonal, so the coordinates $\mathbf{y} = \mathbf{U}^T \mathbf{v}$ must be orthogonal to first axis $[1, 0, \dots, 0]^T$, i.e. $\mathbf{y} = [0, y_2, \dots, y_n]^T$
- In other words, we have to maximize

$$\mathbf{v}^{\mathsf{T}}\mathbf{C}\mathbf{v} = \lambda_2(y_2)^2 \cdots + \lambda_n(y_n)^2$$

under constraints $y_1 = 0$ and $(y_2)^2 + \cdots + (y_n)^2 = 1$

- Again, solution is $\mathbf{y} = [0, 1, 0, ..., 0]^T$, corresponding to the second eigenvector $\mathbf{v} = \mathbf{a}_2$ and preserved variance $\sigma_{\mathbf{v}}^2 = \lambda_2$
- Similarly for the third, fourth, ... axis

The PCA algorithm

 \bullet With the eigenvalue decomposition of $\boldsymbol{C},$ we have

$$\sigma_{\mathbf{v}}^2 = \mathbf{v}^T \mathbf{C} \mathbf{v} = \mathbf{v}^T \mathbf{U} \mathbf{D} \mathbf{U}^T \mathbf{v} = (\mathbf{U}^T \mathbf{v})^T \mathbf{D} (\mathbf{U}^T \mathbf{v}) = \mathbf{y}^T \mathbf{D} \mathbf{y}$$

where $\mathbf{y} = \mathbf{U}^T \mathbf{v} = [y_1, y_2, \dots, y_n]^T$ are the coordinates of \mathbf{v} in the Cartesian basis formed by the eigenvectors of \mathbf{C}

- $\|\mathbf{y}\| = 1$ since \mathbf{U}^T is an isometry (orthogonal matrix)
- We therefore want to maximize

$$\mathbf{v}^T \mathbf{C} \mathbf{v} = \lambda_1 (y_1)^2 + \lambda_2 (y_2)^2 \cdots + \lambda_n (y_n)^2$$

under the constraint $(y_1)^2 + (y_2)^2 + \dots + (y_n)^2 = 1$

- Solution: $\mathbf{y} = [1, 0, \dots, 0]^T$ (since λ_1 is the largest eigenvalue)
- This corresponds to $\mathbf{v} = \mathbf{a}_1$ (the first eigenvector of **C**) and a preserved amount of variance given by $\sigma_{\mathbf{v}}^2 = \mathbf{a}_1^T \mathbf{C} \mathbf{a}_1 = \lambda_1$

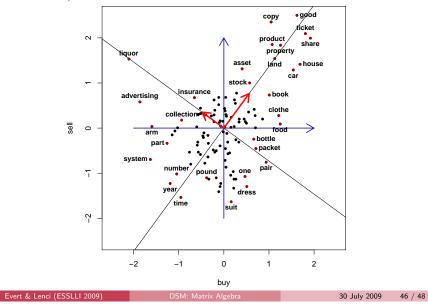
PCA The PCA algorithm

The PCA algorithm

Evert & Lenci (ESSLLI 2009)

- The eigenvectors **a**_i of the covariance matrix **C** are called the **principal components** of the data set
- The amount of variance preserved (or "explained") by the *i*-th principal component is given by the eigenvalue λ_i
- Since λ₁ ≥ λ₂ ≥ · · · ≥ λ_n, the first principal component accounts for the largest amount of variance etc.
- Coordinates of a point x in PCA space are given by U^Tx (note: these are the projections on the principal components)
- For the purpose of "noise reduction", only the first n' < n principal components (with highest variance) are retained, and the other dimensions in PCA space are dropped
 - i.e. data points are projected into the subspace V spanned by the first n' column vectors of **U**

30 July 2009



PCA in R

> pca <- prcomp(M) # for the buy/sell example data</pre>

Proportion of Variance 0.715 0.285 Cumulative Proportion 0.715 1.000

> print(pca)
Standard deviations:
[1] 0.9471326 0.5986067

Rotation:

PC1PC2buy-0.59074160.8068608sell-0.8068608-0.5907416

Evert & Lenci (ESSLLI 2009)

DSM: Matrix Alg

30 July 2009 47 / 48

PCA with R

PCA in R

Coordinates in PCA space > pca\$x[c("house","book","arm","time"),] PC2 PC1 house -2.1390957 0.5274687 book -1.1864783 0.3797070 0.9141092 -1.3080504 armtime 1.8036445 0.1387165 # Transformation matrix **U** > pca\$rotation PC1 PC2 buy -0.5907416 0.8068608 sell -0.8068608 -0.5907416 # Eigenvalues of the covariance matrix \mathbf{C} > (pca\$sdev)^2 [1] 0.8970602 0.3583299