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The bad cop is back . ..
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Length & distance Introduction

Geometry and meaning

@ So far: apply vector methods and matrix algebra to DSMs
e Geometric intuition: distance ~ semantic (dis)similarity

> nearest neighbours

> clustering

» semantic maps

> representation for connectionist models

5= \WWe need a mathematical notion of distance!
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Length & distance VISR EIE

Measuring distance

e Distance between vectors %,
u,v € R” = (dis)similarity o1 u
of data points sl
> u=(ug,...,up) W1 (it = 5
> v={(v1,...,vp) s @ =so
2+ < V
A
o
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e
Measuring distance

@ Distance between vectors %,
u,v € R” = (dis)similarity o1 u
of data points sl
> u:(ulv'”aun) a4 dy (@,7) =5
> V:(V13-~-7Vn) .1 dy (ii, ) = 3.6
e Euclidean distance d> (u,v) o4 <V
A
o

d2 (u,v) == \/(Ul —vi)?2 4+ (up — vp)?
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Length & distance Metric spaces

Measuring distance

e Distance between vectors %,
u,v € R” = (dis)similarity o1 u
of data points sl
> u:(ulv'”aun) 44 dy (i0,7) =5
> V:(Vla---,Vn) ,] a@n=ss
e Euclidean distance d> (u,v) o4 <V
e “City block” Manhattan T

distance dj (u, v) |i\'1 3 o4 s 6 M

di (u,v) = vy —vi|+ -+ |up— vy
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Length & distance Metric spaces

Measuring distance

e Distance between vectors %,
u,v € R” = (dis)similarity o1 u
of data points sl
> u:(ulv'”aun) 44 dy (i0,7) =5
> V:(Vlw--,Vn) ,] a@n=ss
e Euclidean distance d, (u,v) 4 <V
e “City block” Manhattan T

. e
distance dj (u, v) |\'1 3 o4 s 6 M

@ Both are special cases of the
Minkowski p-distance dj, (u, v)
(for p € [1,00])

1
dp (U,V) = (lul — V1|p+ e |un _ Vn|p) /P
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Length & distance Metric spaces

Measuring distance

e Distance between vectors %,
u,v € R” = (dis)similarity o1 u
of data points sl
> u:(ulv'”aun) 44 dy (i0,7) =5
> V:(V17~~-7Vn) s w@n-ss
e Euclidean distance d, (u,v) 4 <V
e “City block” Manhattan T

. e
distance dj (u, v) |\'1 3 o4 s 6 M

@ Both are special cases of the
Minkowski p-distance dj, (u, v)
(for p € [1,00])

1
dp (U,V) = (lul — V1|p+ e |un _ Vn|p) /P
doo (u,v) = max{|uy — vi|,..., up — va|}
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Length & distance Metric spaces

Metric: a measure of distance

@ A metric is a general measure of the distance d (u, v) between
points u and v, which satisfies the following axioms:
» d(u,v)=d(v,u)
» d(u,v) >0foru#v
» d(u,u)=0
» d(u,w) < d(u,v)+ d(v,w) (triangle inequality)
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Length & distance Metric spaces

Metric: a measure of distance

@ A metric is a general measure of the distance d (u, v) between
points u and v, which satisfies the following axioms:

» d(u,v)=d(v,u)

» d(u,v) >0foru#v
» d(u,u)=0

>

d(u,w) < d(u,v) + d(v,w) (triangle inequality)
@ Metrics form a very broad class of distance measures, some of
which do not fit in well with our geometric intuitions
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Length & distance Metric spaces

Metric: a measure of distance

@ A metric is a general measure of the distance d (u, v) between
points u and v, which satisfies the following axioms:

» d(u,v)=d(v,u)
» d(u,v) >0foru#v
» d(u,u)=0

» d(u,w) < d(u,v)+ d(v,w) (triangle inequality)
@ Metrics form a very broad class of distance measures, some of
which do not fit in well with our geometric intuitions

o E.g., metric need not be translation-invariant

d(u+x,v+x)#d(u,v)
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N . Tl Metric spaces
Metric: a measure of distance

@ A metric is a general measure of the distance d (u, v) between
points u and v, which satisfies the following axioms:

» d(u,v)=d(v,u)
» d(u,v) >0foru#v
» d(u,u)=0

» d(u,w) < d(u,v)+ d(v,w) (triangle inequality)
@ Metrics form a very broad class of distance measures, some of
which do not fit in well with our geometric intuitions

o E.g., metric need not be translation-invariant
d(u+x,v+x)#d(uv)

@ Another unintuitive example is the discrete metric
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Length & distance EAVEETIEINS

Distance vs. norm

o Intuitively, distance X,
d(u,v) should correspond
to length [ju — v|| of
displacement vector u —v

» d(u,v) is a metric
> |lu—v]| is a norm

> ||ul| = d(u,0)

[
!

| ] = d(

=y

0) oy

>4 =

origin
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Length & distance EAVEETIEINS

Distance vs. norm

o Intuitively, distance X,
d(u,v) should correspond
to length [ju — v|| of
displacement vector u —v

» d(u,v) is a metric
> |lu—v]| is a norm
> ull = d(u,O)

@ Such a metric is always

translation-invariant

[
!
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Length & distance EAVEETIEINS

Distance vs. norm

o Intuitively, distance X,
d(u,v) should correspond P il = @) u
to length |ju — v|| of [
displacement vector u —v
» d(u,v) is a metric
> |lu—v]| is a norm

> [Jull = d(u,0) <V
@ Such a metric is always B
Lo . ¥ = d(,0)
translation-invariant C
I I L
4 5 6 X1

(] dp (U,V) = ”V — U||p origin

e Minkowski p-norm for p € [1, o0]:

1
Hqu = (‘ul‘P NI ’un’p) /p
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(R WIS STl Vector norms

Norm: a measure of length

@ A general norm ||u|| for the length of a vector u must satisfy
the following axioms:
> |lul| >0foru#£0
> ||[Aul| = |A] - ||u]| (homogeneity, not req'd for metric)
> |ju+v| < |u]| + |lv| (triangle inequality)
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Length & distance EAVEETIEINS

Norm: a measure of length

@ A general norm ||u|| for the length of a vector u must satisfy
the following axioms:

> |jul| >0foru#0
> ||[Aul| = |A] - ||u]| (homogeneity, not req'd for metric)
> |ju+v| < |u]| + |lv| (triangle inequality)

@ every norm defines a translation-invariant metric

d(u,v) = u—v]
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Length & distance EAVEETIEINS

Norm: a measure of length

@ Visualisation of norms in
R? by plotting unit circle
for each norm, i.e. points
u with [jul| =1

Unit circle according to p—norm

1.0

0.5
|
|
©-TTT

)

guUINE

e Here: p-norms |||, for
different values of p

X2
0.0
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Length & distance EAVEETIEINS

Norm: a measure of length

@ Visualisation of norms in
R? by plotting unit circle
for each norm, i.e. points
u with |[u]| =1

Unit circle according to p—norm

1.0

0.5
|
|
©-TTT

)

guUINE

e Here: p-norms |||, for
different values of p

X2
0.0

@ Triangle inequality <=
unit circle is convex

AN

-0 -05 00 05 10 @ This shows that p-norms
% with p < 1 would violate
the triangle inequality
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Length & distance EAVEETIEINS

Norm: a measure of length

@ Visualisation of norms in
R? by plotting unit circle
for each norm, i.e. points
u with |[u]| =1

Unit circle according to p—norm

1.0

0.5
|
|
©-TTT

)

guUINE

e Here: p-norms |||, for
different values of p

¢ @ Triangle inequality <=
| unit circle is convex
-0 -05 00 05 10 @ This shows that p-norms

% with p < 1 would violate
the triangle inequality

X2
0.0

-1.0

@ Consequence for DSM: p > 2 “favours” small differences in
many coordinates, p < 2 differences in few coordinates
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(R WIS STl Vector norms

Operator and matrix norm

@ The norm of a linear map (or “operator”) f : U — V
between normed vector spaces U and V is defined as

Il := max {[|f(u)[| Ju € U, [ju| =1}

> ||f]| depends on the norms chosen in U and V!
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Length & distance EAVEETIEINS

Operator and matrix norm

@ The norm of a linear map (or “operator”) f : U — V
between normed vector spaces U and V is defined as

Il := max {[|f(u)[| Ju € U, [ju| =1}

> ||f]| depends on the norms chosen in U and V!

@ The definition of the operator norm implies

()l < I£]] - [lul]

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009

9/48



Length & distance EAVEETIEINS

Operator and matrix norm

@ The norm of a linear map (or “operator”) f : U — V
between normed vector spaces U and V is defined as

[F]] := max {[[f(u)[| |u € U, |ul| = 1}
> ||f]| depends on the norms chosen in U and V!
@ The definition of the operator norm implies

()l < £ [lul]

@ Norm of a matrix A = norm of corresponding map f

» NB: this is not the same as a p-norm of A in R*™"
» spectral norm induced by Euclidean vector norms
in U and V = largest singular value of A (= SVD)
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Length & distance

Which metric should | use?

Vector norms

@ Choice of metric or norm is one of the parameters of a DSM

Evert & Lenci (ESSLLI 2009)
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Length & distance EAVEETIEINS

Which metric should | use?

@ Choice of metric or norm is one of the parameters of a DSM

@ Measures of distance between points:

>

vV vy VvYyy

intuitive Euclidean norm |||
“city-block” Manhattan distance ||-||1
maximum distance |||/

general Minkowski p-norm |-||,

and many other formulae . ..
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Length & distance EAVEETIEINS

Which metric should | use?

@ Choice of metric or norm is one of the parameters of a DSM
@ Measures of distance between points:

> intuitive Euclidean norm |||
“city-block” Manhattan distance ||-||1
maximum distance |||/

general Minkowski p-norm |-||,

and many other formulae . ..

vV vy VvYyy

@ Measures of the similarity of arrows:
» ‘“cosine distance” ~ wujvy + -+ Upv,
» Dice coefficient (matching non-zero coordinates)
» and, of course, many other formulae ...
1= these measures determine angles between arrows
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Length & distance EAYEISTIaLIeE

Which metric should | use?

Choice of metric or norm is one of the parameters of a DSM

Measures of distance between points:

» intuitive Euclidean norm ||-||2
“city-block” Manhattan distance ||-||1
maximum distance ||-|/co

general Minkowski p-norm |-||,

and many other formulae ...

v vy VvYy

Measures of the similarity of arrows:
» ‘“cosine distance” ~ wujvy + -+ Upv,
» Dice coefficient (matching non-zero coordinates)
» and, of course, many other formulae ...
1= these measures determine angles between arrows

Similarity and distance measures are equivalent!

1= |'m a fan of the Euclidean norm because of its intuitive
geometric properties (angles, orthogonality, shortest path, ...)
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rthlR
Norms & distance measures in R

# We will use the cooccurrence matrix M from the last session
> print (M)
eat get hear kill see use
boat 0 59 4 0 39 23
cat 6 b2 4 26 58 4
cup 1 98 2 0 14 6
dog 33 115 42 17 83 10
knife 3 b1 0 0 20 84
pig 9 12 2 27 17 3

# Note: you can save selected variables with the save () command,
# and restore them in your next session (similar to saving R's workspace)

> save(M, 0, E, M.mds, file="dsm_lab.RData")

# load () restores the variables under the same names!
> load("dsm_lab.RData")
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rthlR
Norms & distance measures in R

# Define functions for general Minkowski norm and distance;
# parameter p is optional and defaults to p = 2

> p.norm <- function (x, p=2) (sum(abs(x)"p))~(1/p)
> p.dist <- function (x, y, p=2) p.norm(x - y, p)

> round(apply (M, 1, p.norm, p=1), 2)
boat cat cup dog knife pig
125 150 121 300 158 70
> round(apply(M, 1, p.norm, p=2), 2)
boat cat cup dog knife pig
74.48 82.53 99.20 152.83 100.33 35.44
> round(apply (M, 1, p.norm, p=4), 2)
boat cat cup dog knife pig
61.93 66.10 98.01 122.71 86.78 28.31
> round(apply(M, 1, p.norm, p=99), 2)
boat cat cup dog knife pig
59 58 98 115 84 27
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rthlR
Norms & distance measures in R

# Here's a nice trick to normalise the row vectors quickly
> normalise <- function (M, p=2) M / apply(M, 1, p.norm, p=p)

# dist () function also supports Minkowski p-metric

# (must normalise rows in order to compare different metrics)

> round(dist(normalise(M, p=1), method="minkowski", p=1), 2)
boat cat cup dog knife

cat 0.58

cup 0.69 0.97

dog 0.55 0.45 0.89

knife 0.73 1.01 1.01 1.00

pig 1.03 0.64 1.29 0.71 1.28

# Try different p-norms: how do the distances change?

> round(dist(normalise(M, p=2), method="minkowski", p=2), 2)
> round(dist (normalise(M, p=4), method="minkowski", p=4), 2)

> round(dist(normalise(M, p=99), method="minkowski", p=99), 2)
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rthlR
Why it is important to normalise vectors

before computing a distance matrix

Two dimensions of English V-Obj DSM

120
|

100
|

use
60
1

40

20
1

e

knife

boat

cat

dog

© T T

0 20 40
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get
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Eugliienn gEaneiy
Euclidean norm & inner product

@ The Euclidean norm |lu||2 = y/(u,u) is special because it can
be derived from the inner product:

(u,v) :=xTy = x1y1 + -+ Xayn

where u =g x and v =g y are the standard coordinates of u
and v (certain other coordinate systems also work)
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Eugliienn gEaneiy
Euclidean norm & inner product

@ The Euclidean norm |lu||2 = y/(u,u) is special because it can
be derived from the inner product:

(uv) :=xTy = x1y1 + - + XoYn

where u =g x and v =g y are the standard coordinates of u
and v (certain other coordinate systems also work)

@ The inner product is a positive definite and symmetric
bilinear form with the following properties:

(Au, v> (u, Av) = A (u,v)

U+ u',v) = (u,v) + (', v)

{u,v V') = (u,v) + u,v')

(u7v> (v,u) (symmetric)

(u,u) = ||u||2 > 0 for u # 0 (positive definite)

also called dot product or scalar product

v

vV vy vy VvYyy
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Sl Gy
Angles and orthogonality

@ The Euclidean inner product has an important geometric
interpretation = angles and orthogonality
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Sl Gy
Angles and orthogonality

@ The Euclidean inner product has an important geometric
interpretation = angles and orthogonality

@ Cauchy-Schwarz inequality:

[{u,v)| < ull - |Iv]
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Eugliienn gEaneiy
Angles and orthogonality

@ The Euclidean inner product has an important geometric
interpretation = angles and orthogonality

@ Cauchy-Schwarz inequality:
[ (u, v[ < Jull - [lv]]
@ Angle ¢ between vectors u,v € R™:

{u,v)

cos¢p = ———
[Jull - {lv]

> cos ¢ is the “cosine similarity” measure
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Eugliienn gEaneiy
Angles and orthogonality

@ The Euclidean inner product has an important geometric
interpretation = angles and orthogonality

@ Cauchy-Schwarz inequality:
[ (u, v[ < Jull - [lv]]
@ Angle ¢ between vectors u,v € R™:

cosg = V)
[Jull - {lv]

> cos ¢ is the “cosine similarity” measure
e u and v are orthogonal iff (u,v) =0

> the shortest connection between a point u and a subspace U
is orthogonal to all vectors v € U
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Euclidean geometry
Cosine similarity in R
The dist () function does not calculate the cosine measure

(because it is a similarity rather than distance value), but:

ud)
u(2) e : . .
M- MT = . u(l) u(2) u(")

ul™

- (M-MT) :<u(i),u(j)>

i

# Matrix of cosine similarities between rows of M:
> M.norm <- normalise(M, p=2) # only works with Euclidean norm!
> M.norm %*% t(M.norm)
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Sl Gy
Euclidean distance or cosine similarity?

@ Which is better, Euclidean distance or cosine similarity?
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Sl Gy
Euclidean distance or cosine similarity?

@ Which is better, Euclidean distance or cosine similarity?

@ They are equivalent: if vectors are normalised (||ull2 = 1),
both lead to the same neighbour ranking
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Euclidean distance or cosine similarity?

@ Which is better, Euclidean distance or cosine similarity?

@ They are equivalent: if vectors are normalised (||ull2 = 1),
both lead to the same neighbour ranking

d2 (u,v) = u—v[2 = {u—v,u—v)
=/ (u,u) + (v,v) — 2 (u,v)
= Vllull2 + [lv]l2 — 2 (u, v)
=4/2—2cos ¢
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Sl Gy
Euclidean distance and cosine similarity

Two dimensions of English V-Obj DSM

120
|

100
|

knife

80
|

use
60
1

20
1

cat

boat

dog
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Eugliienn gEaneiy
Cartesian coordinates

o A set of vectors b)), ... b(" is called orthonormal if the
vectors are pairwise orthogonal and of unit length:

» (bU), b)) =0 for j # k
> (b, b)) = ”b<k)”2 -1
@ An orthonormal basis and the corresponding coordinates are
called Cartesian
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Eugliienn gEaneiy
Cartesian coordinates

o A set of vectors b)), ... b(" is called orthonormal if the
vectors are pairwise orthogonal and of unit length:

» (bU), b)) =0 for j # k
> (b(), b)) = Hb(k)Hz -1
@ An orthonormal basis and the corresponding coordinates are
called Cartesian
o Cartesian coordinates are particularly intuitive, and the inner

product has the same form wrt. every Cartesian basis B: for
u=gx' and v=gy, we have

(uv) = (X)Ty =xqyi + - + Xy,

@ NB: the column vectors of the matrix B are orthonormal

> recall that the columns of B specify the standard coordinates
of the vectors b, ... b("
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Eugliienn gEaneiy
Orthogonal projection

@ Cartesian coordinates u =g x can easily be computed:

<u,b(k)> - <iiju>,b(k)>
Z (69,0 =

N——

=0jk

> Kronecker delta: djy =1 for j = k and O for j # k
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Eugliienn gEaneiy
Orthogonal projection

@ Cartesian coordinates u =g x can easily be computed:

<u, b(k)> - <Zn: ijU),b(k)>
Z (69,0 =

N——

=0jk

> Kronecker delta: djy =1 for j = k and O for j # k

@ Orthogonal projection Py : R” — V to subspace
V:=sp (bM),....b) (for k < n) is given by

Puu =360 (ub0)

Jj=1
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Orientation Normal vector

Hyperplanes & normal vectors

A hyperplane is the decision boundary of a linear classifier!

@ A hyperplane U C R”" through the origin 0 can be
characterized by the equation
U={ueR" | (u,n) =0}

for a suitable n € R” with ||n|| =1
@ n is called the normal vector of U
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Orientation Normal vector

Hyperplanes & normal vectors

A hyperplane is the decision boundary of a linear classifier!
@ A hyperplane U C R”" through the origin 0 can be
characterized by the equation
U={ueR" | (u,n) =0}

for a suitable n € R” with ||n|| =1
@ n is called the normal vector of U
@ The orthogonal projection Py into U is given by

Pyv :=v —n{v,n)
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Orientation Normal vector

Hyperplanes & normal vectors

A hyperplane is the decision boundary of a linear classifier!
@ A hyperplane U C R”" through the origin 0 can be
characterized by the equation
U={ueR" | (u,n) =0}

for a suitable n € R” with ||n|| =1
@ n is called the normal vector of U
@ The orthogonal projection Py into U is given by

Pyv :=v —n{v,n)

@ An arbitrary hyperplane ' C R" can analogously be
characterized by

F:{UER”|<u,n):a}

where a € R is the (signed) distance of ' from 0
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Isometric maps
Orthogonal matrices
@ A matrix A whose column vectors are orthonormal is called

an orthogonal matrix

e A’ is orthogonal iff A is orthogonal
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Orthogonal matrices

@ A matrix A whose column vectors are orthonormal is called
an orthogonal matrix

e A’ is orthogonal iff A is orthogonal

@ The inverse of an orthogonal matrix is simply its transpose:

Al =AT if Ais orthogonal

» it is easy to show ATA = | by matrix multiplication,
since the columns of A are orthonormal

» since AT is also orthogonal, it follows that
AAT = (AT)TAT =1

» side remark: the transposition operator - is called
an involution because (AT)T = A
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=2 TS TS
Isometric maps
@ An endomorphism f : R” — R" is called an isometry iff
(f(u),f(v)) = (u,v) for all u,v € R"

o Geometric interpretation: isometries preserve angles and
distances (which are defined in terms of (-,-))
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Orientation Isometric maps

Isometric maps

@ An endomorphism f : R” — R" is called an isometry iff
(f(u),f(v)) = (u,v) for all u,v € R"

o Geometric interpretation: isometries preserve angles and
distances (which are defined in terms of (-,-))

e f is an isometry iff its matrix A is orthogonal
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laiciie meps
Isometric maps

@ An endomorphism f : R” — R" is called an isometry iff
(f(u),f(v)) = (u,v) for all u,v € R"

o Geometric interpretation: isometries preserve angles and
distances (which are defined in terms of (-,-))

e f is an isometry iff its matrix A is orthogonal

@ Coordinate transformations between Cartesian systems are
isometric (because B and B™! = B are orthogonal)
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Isometric maps

@ An endomorphism f : R” — R" is called an isometry iff
(f(u), f(v)) = (u,v) for all u,v € R"

o Geometric interpretation: isometries preserve angles and
distances (which are defined in terms of (-,-))

e f is an isometry iff its matrix A is orthogonal

@ Coordinate transformations between Cartesian systems are
isometric (because B and B~! = B are orthogonal)

@ Every isometric endomorphism of R” can be written as a
combination of planar rotations and axial reflections in a
suitable Cartesian coordinate system

cosp 0 —sing 1 0 O
R;m) —lo 1 o |, @®@=]o -1 0
sing 0 cos¢o 0
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Summary: orthogonal matrices

@ The column vectors of an orthogonal n x n matrix B form a
Cartesian basis b(1)_ ... b(" of R”
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Summary: orthogonal matrices
@ The column vectors of an orthogonal n x n matrix B form a

Cartesian basis b(1)_ ... b(" of R”
e B1=B7,ie. wehave B'B=BB7 =1
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Orientation Isometric maps

Summary: orthogonal matrices

@ The column vectors of an orthogonal n x n matrix B form a
Cartesian basis b(1)_ ... b(" of R”

e B 1=B7 ie. wehave B'TB=BB7 =1

@ The coordinate transformation B” into B-coordinates is an
isometry, i.e. all distances and angles are preserved
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Summary: orthogonal matrices

@ The column vectors of an orthogonal n x n matrix B form a
Cartesian basis b(1)_ ... b(" of R”

e B1=B7,ie. wehave B'B=BB7 =1

o The coordinate transformation B into B-coordinates is an
isometry, i.e. all distances and angles are preserved

@ The first k < n columns of B form a Cartesian basis of a
subspace V = sp (b(1),... b)) of R"
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Summary: orthogonal matrices

@ The column vectors of an orthogonal n x n matrix B form a
Cartesian basis b(!), ... b(" of R”

e B!=B7,ie. wehave BT B=BB’ =1
@ The coordinate transformation B7 into B-coordinates is an
isometry, i.e. all distances and angles are preserved

@ The first kK < n columns of B form a Cartesian basis of a
subspace V = sp (b(1),... b)) of R"

o The corresponding rectangular matrix B = [b(®), ... b(¥]
performs an orthogonal projection into V:

Pyu =5 BTx (for u =g x)

=F BéTX
w These properties will become important later today!
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Ganarel) e EEEhE:
General inner products

@ Can we also introduce geometric notions such as angles and
orthogonality for other metrics, e.g. the Manhattan distance?

== norm must be derived from appropriate inner product
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General inner products
@ Can we also introduce geometric notions such as angles and

orthogonality for other metrics, e.g. the Manhattan distance?
== norm must be derived from appropriate inner product

o General inner products are defined by
(uv)g = (<)Y =iy + -+ x¥,

wrt. non-Cartesian basis B (u=g x', v=gy')
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N S Ll General inner product
General inner products

@ Can we also introduce geometric notions such as angles and
orthogonality for other metrics, e.g. the Manhattan distance?

== norm must be derived from appropriate inner product

o General inner products are defined by
(uv)g = (X)"y =xiyi + -+ x5,
wrt. non-Cartesian basis B (u =g x', v =g y’)

@ (-,-)g can be expressed in standard coordinates u =¢ X,
v =g y using the transformation matrix B:

(wv)g = ()Ty' = (B7%)" (BYy)
=x"(B1)"Bly=:x"Cy
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el i el s:
General inner products

@ The coefficient matrix C := (B~1)"B~1 of the general inner
product is symmetric

CT — (B—l)T((B—l)T)T _ (B—l)TB—l —-C
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Ganarel) e EEEhE:
General inner products

@ The coefficient matrix C := (B~1)"B~1 of the general inner
product is symmetric

CT — (B—l)T((B—l)T)T _ (B—l)TB—l =C
and positive definite

x"Cx = (B_lx)T(B_lx) =(xX)"x >0
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Ganarel) e EEEhE:
General inner products

@ The coefficient matrix C := (B~1)"B~1 of the general inner
product is symmetric

CT — (B—l)T((B—l)T)T — (B—l)TB—l =C
and positive definite
x"Cx = (B_lx)T(B_lx) =(xX)"x >0

e It is (relatively) easy to show that every positive definite and
symmetric bilinear form can be written in this way.

1= j.e. every norm that is derived from an inner product can be
expressed in terms of a coefficient matrix C or basis B
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Ganarel) e EEEhE:
General inner products

An example:

[
(@]
I
|

(6]

o |
> o
—

Graph shows unit circle
of the inner product C,
i.e. points x with

x'Cx=1
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Ganarel) e EEEhE:
General inner products

o C is a symmetric matrix

@ There is always an
orthonormal basis such
that C has diagonal form

@ “Standard” dot product
with additional scaling
factors (wrt. this
orthonormal basis)

@ Intuition: unit circle is a
squashed and rotated disk
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Ganarel) e EEEhE:
General inner products

o C is a symmetric matrix

@ There is always an
orthonormal basis such
that C has diagonal form

@ “Standard” dot product
with additional scaling
factors (wrt. this
orthonormal basis)

@ Intuition: unit circle is a
squashed and rotated disk

w FEvery “geometric” norm is equivalent to the Euclidean norm
except for a rotation and rescaling of the axes
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Wizigaiden and eamie e
Motivating latent dimensions: example data

@ Example: term-term matrix

. , noun buy sell

@ V-Obj cooc's extracted from BNC bond 028 077

> targets = noun lemmas cigarette | -0.52  0.44

» features = verb lemmas dress 0.51 -1.30

o feature scaling: association scores frechold | -0.01 -0.08

b - 101 land 113 1.54

(modified log Dice coefficient) number | -1.05 -1.02

@ k =111 nouns with f > 20 per -0.35  -0.16

(must have non-zero row vectors) pub 0.08 - -1.30

share 1.92  1.99

@ n =2 dimensions: buy and sell system | -1.63 -0.70
Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009 30/ 48



Motivating latent dimensions & subspace projection
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Wizigaiden and eamie e
Motivating latent dimensions & subspace projection

@ The latent property of being a commodity is “expressed”

through associations with several verbs: sell, buy, acquire, . ..

@ Consequence: these DSM dimensions will be correlated
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Wizigaiden and eamie e
Motivating latent dimensions & subspace projection
@ The latent property of being a commodity is “expressed”

through associations with several verbs: sell, buy, acquire, . ..

@ Consequence: these DSM dimensions will be correlated

e Identify latent dimension by looking for strong correlations
(or weaker correlations between large sets of features)
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Motvatontandleampleldata
Motivating latent dimensions & subspace projection

@ The latent property of being a commodity is “expressed”

through associations with several verbs: sell, buy, acquire, . ..

@ Consequence: these DSM dimensions will be correlated

Identify latent dimension by looking for strong correlations
(or weaker correlations between large sets of features)

Projection into subspace V of k < n latent dimensions
as a “noise reduction” technique - LSA

Assumptions of this approach:

» “latent” distances in V are semantically meaningful
» other “residual” dimensions represent chance co-occurrence
patterns, often particular to the corpus underlying the DSM
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The latent “commodity” dimension
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Calan i v
The variance of a data set
e Rationale: find the dimensions that give the best (statistical)
explanation for the variance (or “spread”) of the data

@ Definition of the variance of a set of vectors
1= you remember the equations for one-dimensional data, right?
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Calan i v
The variance of a data set
e Rationale: find the dimensions that give the best (statistical)
explanation for the variance (or “spread”) of the data

@ Definition of the variance of a set of vectors
1= you remember the equations for one-dimensional data, right?

k
1 .
2 (N _ 2
= o

1<
= ;Z"(')
i=1

@ Easier to calculate if we center the data so that 4 =0
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M@\ Calculating variance

Centering the data set

@ Uncentered
data set

@ Centered .
data set

sell

@ Variance of N
centered data

buy
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M@\ Calculating variance

Centering the data set

@ Uncentered
data set

@ Centered .
data set

sell

@ Variance of IR
centered data R

-2
1

buy
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M@\ Calculating variance

Centering the data set

@ Uncentered
data set

@ Centered
data set

sell
0
|

@ Variance of
centered data

variance = 1.26

k
= ZIIX(’)II2 e
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Rioiecton
Principal components analysis (PCA)

@ We want to project the data points to a lower-dimensional
subspace, but preserve distances as well as possible
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FraEEten
Principal components analysis (PCA)
@ We want to project the data points to a lower-dimensional

subspace, but preserve distances as well as possible

@ Insight 1: variance = average squared distance

k k k
1 : ; 2 .
- () _ 3012 = ()12 — o2
k1) 2 20 O = 2 X RO =2

i=1 j=1
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RiiEEton
Principal components analysis (PCA)

@ We want to project the data points to a lower-dimensional
subspace, but preserve distances as well as possible

@ Insight 1: variance = average squared distance

k k k
1 : . 2 .
- () _ 3012 = ()12 — o2
G 2o I = 2 S O = 20

i=1 j=1

@ Insight 2: orthogonal projection always reduces distances
-» difference in squared distances = loss of variance
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RiiEEton
Principal components analysis (PCA)

@ We want to project the data points to a lower-dimensional
subspace, but preserve distances as well as possible

@ Insight 1: variance = average squared distance

k k k
1 . . 2 .
- () _ 5012 = (N2 = 9,52
o o O —xO = =g S = 20

i=1 j=1

@ Insight 2: orthogonal projection always reduces distances
-» difference in squared distances = loss of variance

o If we reduced the data set to just a single dimension, which
dimension would still have the highest variance?

o Mathematically, we project the points onto a line through the
origin and calculate one-dimensional variance on this line

> we'll see in a moment how to compute such projections
> but first, let us look at a few examples
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Rioiecton
Projection and preserved variance: examples
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Rioiecton
Projection and preserved variance: examples

& variance = 0.36

T T T T T
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Projection

Projection and preserved variance: examples

sell

-2
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Projection

Projection and preserved variance: examples

sell
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Rioiecton
Projection and preserved variance: examples
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Projection

Projection and preserved variance: examples

sell
0

-1

-2

Evert & Lenci (ESSLLI 2009)

variance = 0.9
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RiiEEton
The mathematics of projections

@ Line through origin given
by unit vector ||v|| =1

@ For a point x and the .
corresponding unit vector ¢ Py
x' = x/||x||, we have
cosp = (X', v)

= (%, V)V

| =i
=i

U

=

Ivll =1
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RiiEEton
The mathematics of projections

@ Line through origin given
by unit vector ||v|| =1

@ For a point x and the .
corresponding unit vector ® Po% = (%,7)7
x' = x/||x||, we have
cosp = (X', v)

)

§| =

vl =1

@ Trigonometry: position of projected point on the line is
[[x[| - cos o = [|x]| - (X', v) = (x,v)

@ Preserved variance = one-dimensional variance on the line
(note that data set is still centered after projection)

k
1
02 = 1 ; (x,-,v>2
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CovaiEne e
The covariance matrix

o Find the direction v with maximal o2, which is given by:

— 1§
_k_ xla
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CovaiEne e
The covariance matrix

o Find the direction v with maximal o2, which is given by:

1

k—1
i

<Xi7 V>2

COINCH

<ql\>
I

1

1

k—1
i

I
-M*‘

1
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CovaiEne e
The covariance matrix

o Find the direction v with maximal o2, which is given by:

k
=

<N
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CovaiEne e
The covariance matrix

o Find the direction v with maximal o2, which is given by:

Q
< N
Il
)
| =
[
—~
X
<
~
N
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The covariance matrix

o Find the direction v with maximal o2, which is given by:

k
2_ 1 . 2
Oy = %=1 E (xi,v)
i=1
k
T
_ 1 T T
= -1 Z (Xi V) (Xl' V)
i=1
k
_ 1 E T T
= %1 \") (X,XI )V
i=1
k
T 1 T
=V =1 ZXIX’ \")
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CovaiEne e
The covariance matrix

@ C is the covariance matrix of the data points
» Cis a square n x n matrix (2 X 2 in our example)

@ Preserved variance after projection onto a line v can easily be
calculated as 02 = v’ Cv
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The covariance matrix

@ C is the covariance matrix of the data points
» Cis a square n x n matrix (2 X 2 in our example)
@ Preserved variance after projection onto a line v can easily be
calculated as 02 = v’ Cv
@ The original variance of the data set is given by
02 =tr(C)=Ci1+ Co+ -+ Cpp

2
02 Co - G
2
C=
Cn—l,n
C ... C 2
nl n,n—1 On
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Ul PEA elgaiin
Maximizing preserved variance

@ In our example, we want to find the axis v; that preserves the
largest amount of variance by maximizing vi’—Cvl
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Ul PEA elgaiin
Maximizing preserved variance

@ In our example, we want to find the axis v; that preserves the
largest amount of variance by maximizing vi’—Cvl

@ For higher-dimensional data set, we also want to find the
axis vo with the second largest amount of variance, etc.

1= Should not include variance that has already been accounted
for: vo must be orthogonal to vy, i.e. {vi,vp) =0
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Ul PEA elgaiin
Maximizing preserved variance

@ In our example, we want to find the axis v; that preserves the
largest amount of variance by maximizing vi’—Cvl

@ For higher-dimensional data set, we also want to find the
axis vo with the second largest amount of variance, etc.

1= Should not include variance that has already been accounted
for: vo must be orthogonal to vy, i.e. {vi,vp) =0

e Orthogonal dimensions v(!) v(?) . partition variance:

2_ 2 2
o —av(l)—i-av(z)—i—...
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Ul PEA elgaiin
Maximizing preserved variance

@ In our example, we want to find the axis v; that preserves the
largest amount of variance by maximizing vi’—Cvl

@ For higher-dimensional data set, we also want to find the
axis vo with the second largest amount of variance, etc.

1= Should not include variance that has already been accounted
for: vo must be orthogonal to vy, i.e. {vi,vp) =0

1) v

e Orthogonal dimensions v(!) v(?) . partition variance:

2 _ 2 2

0" =0,1) T Oy +--.

@ Useful result from linear algebra: every symmetric matrix
C = C7 has an eigenvalue decomposition with orthogonal
eigenvectors aj, ay, ..., a, and corresponding eigenvalues
A=A > 2 A
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Ul PEA elgaiin
Eigenvalue decomposition

@ The eigenvalue decomposition of C can be written in the form

C=U-D-U"
where U is an orthogonal matrix of eigenvectors (columns)
and D = Diag(\1, ..., \n) a diagonal matrix of eigenvalues
AL
A2
U=|a; a --- a, D=
An

» note that both U and D are n X n square matrices
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Ul PEA elgaiin
The PCA algorithm

@ With the eigenvalue decomposition of C, we have
o2=v'Cv=v'UDU'v=(U"v)'D(U"v) = y"Dy

wherey = UTv = [y1,y2,...,y,] " are the coordinates of v in
the Cartesian basis formed by the eigenvectors of C
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Ul PEA elgaiin
The PCA algorithm
@ With the eigenvalue decomposition of C, we have
o2=v'Cv=v'UDU'v=(U"v)'D(U"v) = y"Dy

wherey = UTv = [y1,y2,...,y,] " are the coordinates of v in
the Cartesian basis formed by the eigenvectors of C

o |ly|| =1 since UT is an isometry (orthogonal matrix)

@ We therefore want to maximize
viCv = M(1)% + Ma(2)? -+ Aa(yn)?

under the constraint (y1)? + (y2)2 + -+ (yn)? =1
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Ul FEA elitiin
The PCA algorithm

@ With the eigenvalue decomposition of C, we have
o2=v Cv=v'UDU v = (UTV)TD(UTV) = yTDy

V:

wherey = UTv = [y1,y2,...,y,] " are the coordinates of v in
the Cartesian basis formed by the eigenvectors of C

lyll =1 since UT is an isometry (orthogonal matrix)

@ We therefore want to maximize
viCv=2(31)% + 2(2)? -+ Aa(yn)?

under the constraint (y1)2 + (y2)? + -+ (vn)? =1
Solution: y = [1,0,...,0]" (since )1 is the largest eigenvalue)

@ This corresponds to v = ay (the first eigenvector of C) and a
preserved amount of variance given by 03 = alTCal =)\
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Ul PEA elgaiin
The PCA algorithm

@ In order to find the dimension of second highest variance,
we have to look for an axis v orthogonal to a;
ww UT is orthogonal, so the coordinates y = U’ v must be

orthogonal to first axis [1,0,...,0]", i.e.y = [0,y2,...,yn]"
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The PCA algorithm

@ In order to find the dimension of second highest variance,
we have to look for an axis v orthogonal to a;

ww UT is orthogonal, so the coordinates y = U’ v must be

orthogonal to first axis [1,0,...,0]", i.e.y = [0,y2,...,yn]"

@ In other words, we have to maximize
viCv= )‘2()’2)2 iy )‘n(yn)Q

under constraints y; = 0 and (y2)2 +--- + (y5)? =1
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Ul PEA elgaiin
The PCA algorithm

@ In order to find the dimension of second highest variance,
we have to look for an axis v orthogonal to a;

ww UT is orthogonal, so the coordinates y = U’ v must be

orthogonal to first axis [1,0,...,0]", i.e.y = [0,y2,...,yn]"

@ In other words, we have to maximize
viCv= /\2()’2)2 iy )‘n()’n)Q

under constraints y; = 0 and (y2)2 +--- + (y5)? =1
e Again, solution isy = [0,1,0,...,0]7, corresponding to the
second eigenvector v = ay and preserved variance 02 = \;
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Ul FEA elitiin
The PCA algorithm

@ In order to find the dimension of second highest variance,
we have to look for an axis v orthogonal to a;

ww UT is orthogonal, so the coordinates y = U’ v must be

orthogonal to first axis [1,0,...,0]7, i.e.y =[0,yo,...,ya]"

@ In other words, we have to maximize
viCv= )‘2()/2)2 et )‘n()’n)2

under constraints y; = 0 and (y2)2 +--- + (y5)? =1
e Again, solution isy = [0,1,0,...,0]7, corresponding to the
second eigenvector v = a, and preserved variance 03 =X\

@ Similarly for the third, fourth, ... axis
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Ul FEA elitiin
The PCA algorithm

@ The eigenvectors a; of the covariance matrix C are called the
principal components of the data set

@ The amount of variance preserved (or “explained”) by the i-th
principal component is given by the eigenvalue \;

@ Since A\ > X\ > --- > )\, the first principal component
accounts for the largest amount of variance etc.

o Coordinates of a point x in PCA space are given by U”x
(note: these are the projections on the principal components)

@ For the purpose of “noise reduction”, only the first n’ < n
principal components (with highest variance) are retained, and
the other dimensions in PCA space are dropped

1= j.e. data points are projected into the subspace V spanned by
the first n’ column vectors of U
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PCA example
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M@ with R

PCA in R

> pca <- prcomp(M) # for the buy/sell example data

> summary (pca)
Importance of components:

PC1  PC2
Standard deviation 0.947 0.599
Proportion of Variance 0.715 0.285
Cumulative Proportion 0.715 1.000

> print(pca)
Standard deviations:
[1] 0.9471326 0.5986067

Rotation:

PC1 PC2
buy -0.5907416 0.8068608
sell -0.8068608 -0.5907416
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M@ with R

PCA in R

# Coordinates in PCA space

> pca$x[c("house","book","arm","time"), ]
PC1 PC2

house -2.1390957 0.5274687

book -1.1864783 0.3797070

arm 0.9141092 -1.3080504

time 1.8036445 0.1387165

# Transformation matrix U
> pca$rotation

PC1 PC2
buy -0.5907416 0.8068608
sell -0.8068608 -0.5907416

# Eigenvalues of the covariance matrix C

> (pca$sdev) "2
[1] 0.8970602 0.3583299
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