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The bad cop is back . . .
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Length & distance Introduction

Geometry and meaning

So far: apply vector methods and matrix algebra to DSMs

Geometric intuition: distance ' semantic (dis)similarity
I nearest neighbours
I clustering
I semantic maps
I representation for connectionist models

+ We need a mathematical notion of distance!
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Length & distance Metric spaces

Measuring distance

Distance between vectors
u, v ∈ Rn Ü (dis)similarity
of data points

I u = (u1, . . . , un)
I v = (v1, . . . , vn)

Euclidean distance d2 (u, v)

“City block” Manhattan
distance d1 (u, v)

Both are special cases of the
Minkowski p-distance dp (u, v)
(for p ∈ [1,∞])
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Length & distance Metric spaces

Metric: a measure of distance

A metric is a general measure of the distance d (u, v) between
points u and v, which satisfies the following axioms:

I d (u, v) = d (v,u)
I d (u, v) > 0 for u 6= v
I d (u,u) = 0
I d (u,w) ≤ d (u, v) + d (v,w) (triangle inequality)

Metrics form a very broad class of distance measures, some of
which do not fit in well with our geometric intuitions

E.g., metric need not be translation-invariant

d (u + x, v + x) 6= d (u, v)

Another unintuitive example is the discrete metric

d (u, v) =

{
0 u = v

1 u 6= v
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Length & distance Vector norms

Distance vs. norm

Intuitively, distance
d (u, v) should correspond
to length ‖u− v‖ of
displacement vector u− v

I d (u, v) is a metric
I ‖u− v‖ is a norm
I ‖u‖ = d

(
u, 0
)

Such a metric is always
translation-invariant

dp (u, v) = ‖v − u‖p
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)

d (!u,!v) = ‖!u − !v‖

‖!v‖ = d
(
!v,!0

)

Minkowski p-norm for p ∈ [1,∞]:

‖u‖p :=
(
|u1|p + · · ·+ |un|p

)1/p
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Length & distance Vector norms

Norm: a measure of length

A general norm ‖u‖ for the length of a vector u must satisfy
the following axioms:

I ‖u‖ > 0 for u 6= 0
I ‖λu‖ = |λ| · ‖u‖ (homogeneity, not req’d for metric)
I ‖u + v‖ ≤ ‖u‖ + ‖v‖ (triangle inequality)

every norm defines a translation-invariant metric

d (u, v) := ‖u− v‖
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Length & distance Vector norms

Norm: a measure of length
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Visualisation of norms in
R2 by plotting unit circle
for each norm, i.e. points
u with ‖u‖ = 1

Here: p-norms ‖·‖p for
different values of p

Triangle inequality ⇐⇒
unit circle is convex

This shows that p-norms
with p < 1 would violate
the triangle inequality

Consequence for DSM: p � 2 “favours” small differences in
many coordinates, p � 2 differences in few coordinates
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Length & distance Vector norms

Operator and matrix norm

The norm of a linear map (or “operator”) f : U → V
between normed vector spaces U and V is defined as

‖f ‖ := max {‖f (u)‖ |u ∈ U, ‖u‖ = 1}

I ‖f ‖ depends on the norms chosen in U and V !

The definition of the operator norm implies

‖f (u)‖ ≤ ‖f ‖ · ‖u‖

Norm of a matrix A = norm of corresponding map f
I NB: this is not the same as a p-norm of A in Rk·n

I spectral norm induced by Euclidean vector norms
in U and V = largest singular value of A (Ü SVD)
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Length & distance Vector norms

Which metric should I use?

Choice of metric or norm is one of the parameters of a DSM

Measures of distance between points:
I intuitive Euclidean norm ‖·‖2
I “city-block” Manhattan distance ‖·‖1
I maximum distance ‖·‖∞
I general Minkowski p-norm ‖·‖p
I and many other formulae . . .

Measures of the similarity of arrows:
I “cosine distance” ∼ u1v1 + · · ·+ unvn

I Dice coefficient (matching non-zero coordinates)
I and, of course, many other formulae . . .

+ these measures determine angles between arrows

Similarity and distance measures are equivalent!

+ I’m a fan of the Euclidean norm because of its intuitive
geometric properties (angles, orthogonality, shortest path, . . . )
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Length & distance with R

Norms & distance measures in R

# We will use the cooccurrence matrix M from the last session
> print(M)

eat get hear kill see use

boat 0 59 4 0 39 23

cat 6 52 4 26 58 4

cup 1 98 2 0 14 6

dog 33 115 42 17 83 10

knife 3 51 0 0 20 84

pig 9 12 2 27 17 3

# Note: you can save selected variables with the save() command,
# and restore them in your next session (similar to saving R’s workspace)
> save(M, O, E, M.mds, file="dsm_lab.RData")

# load() restores the variables under the same names!
> load("dsm_lab.RData")
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Length & distance with R

Norms & distance measures in R

# Define functions for general Minkowski norm and distance;
# parameter p is optional and defaults to p = 2
> p.norm <- function (x, p=2) (sum(abs(x)^p))^(1/p)
> p.dist <- function (x, y, p=2) p.norm(x - y, p)

> round(apply(M, 1, p.norm, p=1), 2)
boat cat cup dog knife pig

125 150 121 300 158 70

> round(apply(M, 1, p.norm, p=2), 2)
boat cat cup dog knife pig

74.48 82.53 99.20 152.83 100.33 35.44

> round(apply(M, 1, p.norm, p=4), 2)
boat cat cup dog knife pig

61.93 66.10 98.01 122.71 86.78 28.31

> round(apply(M, 1, p.norm, p=99), 2)
boat cat cup dog knife pig

59 58 98 115 84 27
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Length & distance with R

Norms & distance measures in R

# Here’s a nice trick to normalise the row vectors quickly
> normalise <- function (M, p=2) M / apply(M, 1, p.norm, p=p)

# dist() function also supports Minkowski p-metric
# (must normalise rows in order to compare different metrics)
> round(dist(normalise(M, p=1), method="minkowski", p=1), 2)

boat cat cup dog knife

cat 0.58

cup 0.69 0.97

dog 0.55 0.45 0.89

knife 0.73 1.01 1.01 1.00

pig 1.03 0.64 1.29 0.71 1.28

# Try different p-norms: how do the distances change?
> round(dist(normalise(M, p=2), method="minkowski", p=2), 2)
> round(dist(normalise(M, p=4), method="minkowski", p=4), 2)
> round(dist(normalise(M, p=99), method="minkowski", p=99), 2)
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Length & distance with R

Why it is important to normalise vectors
before computing a distance matrix

●
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Orientation Euclidean geometry

Euclidean norm & inner product

The Euclidean norm ‖u‖2 =
√
〈u,u〉 is special because it can

be derived from the inner product:

〈u, v〉 := xT y = x1y1 + · · ·+ xnyn

where u ≡E x and v ≡E y are the standard coordinates of u
and v (certain other coordinate systems also work)

The inner product is a positive definite and symmetric
bilinear form with the following properties:

I 〈λu, v〉 = 〈u, λv〉 = λ 〈u, v〉
I 〈u + u′, v〉 = 〈u, v〉+ 〈u′, v〉
I 〈u, v + v′〉 = 〈u, v〉+ 〈u, v′〉
I 〈u, v〉 = 〈v,u〉 (symmetric)
I 〈u,u〉 = ‖u‖2 > 0 for u 6= 0 (positive definite)
I also called dot product or scalar product
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Orientation Euclidean geometry

Angles and orthogonality

The Euclidean inner product has an important geometric
interpretation Ü angles and orthogonality

Cauchy-Schwarz inequality:∣∣〈u, v〉∣∣ ≤ ‖u‖ · ‖v‖
Angle φ between vectors u, v ∈ Rn:

cosφ :=
〈u, v〉
‖u‖ · ‖v‖

I cosφ is the “cosine similarity” measure

u and v are orthogonal iff 〈u, v〉 = 0
I the shortest connection between a point u and a subspace U

is orthogonal to all vectors v ∈ U
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u and v are orthogonal iff 〈u, v〉 = 0
I the shortest connection between a point u and a subspace U

is orthogonal to all vectors v ∈ U
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Orientation Euclidean geometry

Cosine similarity in R

The dist() function does not calculate the cosine measure
(because it is a similarity rather than distance value), but:

M ·MT =


· · · u(1) · · ·
· · · u(2) · · ·

· · · u(n) · · ·

 ·


...
...

...
u(1) u(2) u(n)

...
...

...



å
(
M ·MT

)
ij

=
〈

u(i),u(j)
〉

# Matrix of cosine similarities between rows of M:
> M.norm <- normalise(M, p=2) # only works with Euclidean norm!
> M.norm %*% t(M.norm)
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Orientation Euclidean geometry

Euclidean distance or cosine similarity?

Which is better, Euclidean distance or cosine similarity?

They are equivalent: if vectors are normalised (‖u‖2 = 1),
both lead to the same neighbour ranking

d2 (u, v) =
√
‖u− v‖2 =

√
〈u− v,u− v〉

=
√
〈u,u〉+ 〈v, v〉 − 2 〈u, v〉

=
√
‖u‖2 + ‖v‖2 − 2 〈u, v〉

=
√

2− 2 cosφ
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Orientation Euclidean geometry

Euclidean distance and cosine similarity
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Orientation Euclidean geometry

Cartesian coordinates

A set of vectors b(1), . . . ,b(n) is called orthonormal if the
vectors are pairwise orthogonal and of unit length:

I
〈
b(j),b(k)

〉
= 0 for j 6= k

I
〈
b(k),b(k)

〉
=
∥∥b(k)

∥∥2
= 1

An orthonormal basis and the corresponding coordinates are
called Cartesian

Cartesian coordinates are particularly intuitive, and the inner
product has the same form wrt. every Cartesian basis B: for
u ≡B x′ and v ≡B y′, we have

〈u, v〉 = (x′)T y′ = x ′1y
′
1 + · · ·+ x ′ny

′
n

NB: the column vectors of the matrix B are orthonormal
I recall that the columns of B specify the standard coordinates

of the vectors b(1), . . . ,b(n)
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Orientation Euclidean geometry

Orthogonal projection

Cartesian coordinates u ≡B x can easily be computed:〈
u,b(k)

〉
=

〈
n∑

j=1

xjb
(j),b(k)

〉

=
n∑

j=1

xj

〈
b(j),b(k)

〉
︸ ︷︷ ︸

=δjk

= xk

I Kronecker delta: δjk = 1 for j = k and 0 for j 6= k

Orthogonal projection PV : Rn → V to subspace
V := sp

(
b(1), . . . ,b(k)

)
(for k < n) is given by

PV u :=
k∑

j=1

b(j)
〈

u,b(j)
〉
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Orientation Normal vector

Hyperplanes & normal vectors
A hyperplane is the decision boundary of a linear classifier!

A hyperplane U ⊆ Rn through the origin 0 can be
characterized by the equation

U =
{

u ∈ Rn
∣∣ 〈u,n〉 = 0

}
for a suitable n ∈ Rn with ‖n‖ = 1

n is called the normal vector of U

The orthogonal projection PU into U is given by

PUv := v − n 〈v,n〉

An arbitrary hyperplane Γ ⊆ Rn can analogously be
characterized by

Γ =
{

u ∈ Rn
∣∣ 〈u,n〉 = a

}
where a ∈ R is the (signed) distance of Γ from 0
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Orientation Isometric maps

Orthogonal matrices

A matrix A whose column vectors are orthonormal is called
an orthogonal matrix

AT is orthogonal iff A is orthogonal

The inverse of an orthogonal matrix is simply its transpose:

A−1 = AT if A is orthogonal

I it is easy to show AT A = I by matrix multiplication,
since the columns of A are orthonormal

I since AT is also orthogonal, it follows that
AAT = (AT )T AT = I

I side remark: the transposition operator ·T is called
an involution because (AT )T = A
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Orientation Isometric maps

Isometric maps

An endomorphism f : Rn → Rn is called an isometry iff
〈f (u), f (v)〉 = 〈u, v〉 for all u, v ∈ Rn

Geometric interpretation: isometries preserve angles and
distances (which are defined in terms of 〈·, ·〉)

f is an isometry iff its matrix A is orthogonal

Coordinate transformations between Cartesian systems are
isometric (because B and B−1 = BT are orthogonal)

Every isometric endomorphism of Rn can be written as a
combination of planar rotations and axial reflections in a
suitable Cartesian coordinate system

R
(1,3)
φ =

[
cos φ 0 − sin φ

0 1 0
sin φ 0 cos φ

]
, Q(2) =

[
1 0 0
0 −1 0
0 0 1

]
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Orientation Isometric maps

Summary: orthogonal matrices

The column vectors of an orthogonal n × n matrix B form a
Cartesian basis b(1), . . . ,b(n) of Rn

B−1 = BT , i.e. we have BT B = BBT = I

The coordinate transformation BT into B-coordinates is an
isometry, i.e. all distances and angles are preserved

The first k < n columns of B form a Cartesian basis of a
subspace V = sp

(
b(1), . . . ,b(k)

)
of Rn

The corresponding rectangular matrix B̂ =
[
b(1), . . . ,b(k)

]
performs an orthogonal projection into V :

PV u ≡B B̂T x (for u ≡E x)

≡E B̂B̂T x

å These properties will become important later today!
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Orientation General inner product

General inner products

Can we also introduce geometric notions such as angles and
orthogonality for other metrics, e.g. the Manhattan distance?

+ norm must be derived from appropriate inner product

General inner products are defined by

〈u, v〉B := (x′)T y′ = x ′1y
′
1 + · · ·+ x ′yy ′n

wrt. non-Cartesian basis B (u ≡B x′, v ≡B y′)

〈·, ·〉B can be expressed in standard coordinates u ≡E x,
v ≡E y using the transformation matrix B:

〈u, v〉B = (x′)T y′ =
(
B−1x

)T (
B−1y

)
= xT (B−1)T B−1y =: xT Cy
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Orientation General inner product

General inner products

The coefficient matrix C := (B−1)T B−1 of the general inner
product is symmetric

CT = (B−1)T ((B−1)T )T = (B−1)T B−1 = C

and positive definite

xT Cx =
(
B−1x

)T (
B−1x

)
= (x′)T x′ ≥ 0

It is (relatively) easy to show that every positive definite and
symmetric bilinear form can be written in this way.

+ i.e. every norm that is derived from an inner product can be
expressed in terms of a coefficient matrix C or basis B
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Orientation General inner product

General inner products

An example:

b(1) = (3, 2), b(2) = (1, 2)

B =

[
3 1
2 2

]
B−1 =

[
1
2 −1

4
−1

2
3
4

]
C =

[
.5 −.5
−.5 .625

]
Graph shows unit circle
of the inner product C,
i.e. points x with

xT Cx = 1

x1

x2

-3 -2 -1 1 2

-3

-2

-1

1

2

3

3

b1
b2

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009 28 / 48



Orientation General inner product

General inner products

C is a symmetric matrix

There is always an
orthonormal basis such
that C has diagonal form

“Standard” dot product
with additional scaling
factors (wrt. this
orthonormal basis)

Intuition: unit circle is a
squashed and rotated disk

x1

x2

-3 -2 -1 1 2

-3

-2

-1

1

2

3

3

c2

c1

å Every “geometric” norm is equivalent to the Euclidean norm
except for a rotation and rescaling of the axes
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PCA Motivation and example data

Motivating latent dimensions: example data

Example: term-term matrix

V-Obj cooc’s extracted from BNC
I targets = noun lemmas
I features = verb lemmas

feature scaling: association scores
(modified log Dice coefficient)

k = 111 nouns with f ≥ 20
(must have non-zero row vectors)

n = 2 dimensions: buy and sell

noun buy sell

bond 0.28 0.77
cigarette -0.52 0.44
dress 0.51 -1.30
freehold -0.01 -0.08
land 1.13 1.54
number -1.05 -1.02
per -0.35 -0.16
pub -0.08 -1.30
share 1.92 1.99
system -1.63 -0.70
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PCA Motivation and example data

Motivating latent dimensions & subspace projection

0 1 2 3 4
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PCA Motivation and example data

Motivating latent dimensions & subspace projection

The latent property of being a commodity is “expressed”
through associations with several verbs: sell, buy, acquire, . . .

Consequence: these DSM dimensions will be correlated

Identify latent dimension by looking for strong correlations
(or weaker correlations between large sets of features)

Projection into subspace V of k < n latent dimensions
as a “noise reduction” technique Ü LSA

Assumptions of this approach:
I “latent” distances in V are semantically meaningful
I other “residual” dimensions represent chance co-occurrence

patterns, often particular to the corpus underlying the DSM
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PCA Motivation and example data

The latent “commodity” dimension
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PCA Calculating variance

The variance of a data set

Rationale: find the dimensions that give the best (statistical)
explanation for the variance (or “spread”) of the data

Definition of the variance of a set of vectors

+ you remember the equations for one-dimensional data, right?

σ2 =
1

k − 1

k∑
i=1

‖x(i) − µ‖2

µ =
1

k

k∑
i=1

x(i)

Easier to calculate if we center the data so that µ = 0
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PCA Calculating variance

Centering the data set
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PCA Calculating variance
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PCA Projection

Principal components analysis (PCA)

We want to project the data points to a lower-dimensional
subspace, but preserve distances as well as possible

Insight 1: variance = average squared distance

1

k(k − 1)

k∑
i=1

k∑
j=1

‖x(i) − x(j)‖2 =
2

k − 1

k∑
i=1

‖x(i)‖2 = 2σ2

Insight 2: orthogonal projection always reduces distances
Ü difference in squared distances = loss of variance

If we reduced the data set to just a single dimension, which
dimension would still have the highest variance?

Mathematically, we project the points onto a line through the
origin and calculate one-dimensional variance on this line

I we’ll see in a moment how to compute such projections
I but first, let us look at a few examples
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PCA Projection

Projection and preserved variance: examples
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PCA Projection

Projection and preserved variance: examples

−2 −1 0 1 2

−
2

−
1

0
1

2

buy

se
ll

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009 37 / 48



PCA Projection

Projection and preserved variance: examples

−2 −1 0 1 2

−
2

−
1

0
1

2

buy

se
ll

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

variance = 0.72

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009 37 / 48



PCA Projection

Projection and preserved variance: examples
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PCA Projection

Projection and preserved variance: examples
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PCA Projection

The mathematics of projections

Line through origin given
by unit vector ‖v‖ = 1

For a point x and the
corresponding unit vector
x′ = x/‖x‖, we have
cosϕ = 〈x′, v〉

.
ϕ

‖!v‖ = 1

!x

!x′ =
!x

‖!x‖
P!v !x = 〈!x, !v〉 !v

Trigonometry: position of projected point on the line is
‖x‖ · cosϕ = ‖x‖ · 〈x′, v〉 = 〈x, v〉
Preserved variance = one-dimensional variance on the line
(note that data set is still centered after projection)

σ2
v =

1

k − 1

k∑
i=1

〈xi , v〉2
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PCA Covariance matrix

The covariance matrix

Find the direction v with maximal σ2
v , which is given by:

σ2
v = 1

k−1

k∑
i=1

〈xi , v〉2
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v , which is given by:

σ2
v = 1

k−1

k∑
i=1

〈xi , v〉2

= 1
k−1

k∑
i=1

(
xT
i v
)T
·
(

xT
i v
)

= 1
k−1

k∑
i=1

vT
(

xix
T
i

)
v

= vT
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xix
T
i
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PCA Covariance matrix

The covariance matrix

C is the covariance matrix of the data points
I C is a square n × n matrix (2× 2 in our example)

Preserved variance after projection onto a line v can easily be
calculated as σ2

v = vT Cv

The original variance of the data set is given by
σ2 = tr(C) = C11 + C22 + · · ·+ Cnn

C =



σ2
1 C12 · · · C1n

C21 σ2
2

. . .
...

...
. . .

. . . Cn−1,n

Cn1 · · · Cn,n−1 σ2
n



Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009 40 / 48



PCA Covariance matrix

The covariance matrix

C is the covariance matrix of the data points
I C is a square n × n matrix (2× 2 in our example)

Preserved variance after projection onto a line v can easily be
calculated as σ2

v = vT Cv

The original variance of the data set is given by
σ2 = tr(C) = C11 + C22 + · · ·+ Cnn

C =



σ2
1 C12 · · · C1n

C21 σ2
2

. . .
...

...
. . .

. . . Cn−1,n

Cn1 · · · Cn,n−1 σ2
n



Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009 40 / 48



PCA The PCA algorithm

Maximizing preserved variance

In our example, we want to find the axis v1 that preserves the
largest amount of variance by maximizing vT

1 Cv1

For higher-dimensional data set, we also want to find the
axis v2 with the second largest amount of variance, etc.

+ Should not include variance that has already been accounted
for: v2 must be orthogonal to v1, i.e. 〈v1, v2〉 = 0

Orthogonal dimensions v(1), v(2), . . . partition variance:

σ2 = σ2
v(1) + σ2

v(2) + . . .

Useful result from linear algebra: every symmetric matrix
C = CT has an eigenvalue decomposition with orthogonal
eigenvectors a1, a2, . . . , an and corresponding eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn
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PCA The PCA algorithm

Eigenvalue decomposition

The eigenvalue decomposition of C can be written in the form

C = U ·D ·UT

where U is an orthogonal matrix of eigenvectors (columns)
and D = Diag(λ1, . . . , λn) a diagonal matrix of eigenvalues

U =



...
...

...
...

...
...

a1 a2 · · · an

...
...

...
...

...
...


D =


λ1

λ2

. . .
. . .

λn



I note that both U and D are n × n square matrices

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 30 July 2009 42 / 48



PCA The PCA algorithm

The PCA algorithm

With the eigenvalue decomposition of C, we have

σ2
v = vT Cv = vT UDUT v = (UT v)T D(UT v) = yT Dy

where y = UT v = [y1, y2, . . . , yn]T are the coordinates of v in
the Cartesian basis formed by the eigenvectors of C

‖y‖ = 1 since UT is an isometry (orthogonal matrix)

We therefore want to maximize

vT Cv = λ1(y1)2 + λ2(y2)2 · · ·+ λn(yn)2

under the constraint (y1)2 + (y2)2 + · · ·+ (yn)2 = 1

Solution: y = [1, 0, . . . , 0]T (since λ1 is the largest eigenvalue)

This corresponds to v = a1 (the first eigenvector of C) and a
preserved amount of variance given by σ2

v = aT
1 Ca1 = λ1
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PCA The PCA algorithm

The PCA algorithm

In order to find the dimension of second highest variance,
we have to look for an axis v orthogonal to a1

+ UT is orthogonal, so the coordinates y = UT v must be
orthogonal to first axis [1, 0, . . . , 0]T , i.e. y = [0, y2, . . . , yn]T

In other words, we have to maximize

vT Cv = λ2(y2)2 · · ·+ λn(yn)2

under constraints y1 = 0 and (y2)2 + · · ·+ (yn)2 = 1

Again, solution is y = [0, 1, 0, . . . , 0]T , corresponding to the
second eigenvector v = a2 and preserved variance σ2

v = λ2

Similarly for the third, fourth, . . . axis
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PCA The PCA algorithm

The PCA algorithm

The eigenvectors ai of the covariance matrix C are called the
principal components of the data set

The amount of variance preserved (or “explained”) by the i-th
principal component is given by the eigenvalue λi

Since λ1 ≥ λ2 ≥ · · · ≥ λn, the first principal component
accounts for the largest amount of variance etc.

Coordinates of a point x in PCA space are given by UT x
(note: these are the projections on the principal components)

For the purpose of “noise reduction”, only the first n′ < n
principal components (with highest variance) are retained, and
the other dimensions in PCA space are dropped

+ i.e. data points are projected into the subspace V spanned by
the first n′ column vectors of U
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PCA The PCA algorithm

PCA example
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PCA The PCA algorithm

PCA example
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PCA with R

PCA in R

> pca <- prcomp(M) # for the buy/sell example data

> summary(pca)
Importance of components:

PC1 PC2

Standard deviation 0.947 0.599

Proportion of Variance 0.715 0.285

Cumulative Proportion 0.715 1.000

> print(pca)
Standard deviations:

[1] 0.9471326 0.5986067

Rotation:

PC1 PC2

buy -0.5907416 0.8068608

sell -0.8068608 -0.5907416
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PCA with R

PCA in R

# Coordinates in PCA space
> pca$x[c("house","book","arm","time"), ]

PC1 PC2

house -2.1390957 0.5274687

book -1.1864783 0.3797070

arm 0.9141092 -1.3080504

time 1.8036445 0.1387165

# Transformation matrix U
> pca$rotation

PC1 PC2

buy -0.5907416 0.8068608

sell -0.8068608 -0.5907416

# Eigenvalues of the covariance matrix C
> (pca$sdev)^2
[1] 0.8970602 0.3583299
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