Geometric methods in vector spaces Distributional Semantic Models

Stefan Evert¹ & Alessandro Lenci²

¹University of Osnabrück, Germany ²University of Pisa, Italy

★ Ξ >

The bad cop is back ...

くほ

Evert & Lenci (ESSLLI 2009)

30 July 2009 2 / 48

Introduction

Geometry and meaning

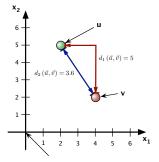
- So far: apply vector methods and matrix algebra to DSMs
- Geometric intuition: distance \simeq semantic (dis)similarity
 - nearest neighbours
 - clustering
 - semantic maps
 - representation for connectionist models

We need a mathematical notion of distance!

Distance between vectors
 u, v ∈ ℝⁿ → (dis)similarity of data points

•
$$\mathbf{u} = (u_1, \ldots, u_n)$$

• $\mathbf{v} = (v_1, \ldots, v_n)$



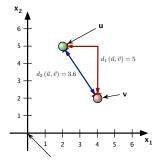
→ Ξ > < Ξ</p>

Distance between vectors
 u, v ∈ ℝⁿ → (dis)similarity of data points

•
$$\mathbf{u} = (u_1, \dots, u_n)$$

• $\mathbf{v} = (v_1, \dots, v_n)$

• Euclidean distance $d_2(\mathbf{u}, \mathbf{v})$



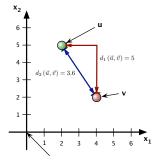
$$d_2(\mathbf{u},\mathbf{v}) := \sqrt{(u_1 - v_1)^2 + \cdots + (u_n - v_n)^2}$$

Distance between vectors
 u, v ∈ ℝⁿ → (dis)similarity of data points

•
$$\mathbf{u} = (u_1, \dots, u_n)$$

• $\mathbf{v} = (v_1, \dots, v_n)$

- Euclidean distance $d_2(\mathbf{u}, \mathbf{v})$
- "City block" Manhattan distance d₁ (u, v)



$$d_1(\mathbf{u},\mathbf{v}) := |u_1 - v_1| + \cdots + |u_n - v_n|$$

х,

6

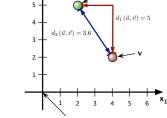
Measuring distance

Distance between vectors
 u, v ∈ ℝⁿ → (dis)similarity of data points

•
$$\mathbf{u} = (u_1, \dots, u_n)$$

• $\mathbf{v} = (v_1, \dots, v_n)$

- Euclidean distance $d_2(\mathbf{u}, \mathbf{v})$
- "City block" Manhattan distance d₁ (u, v)
- Both are special cases of the Minkowski *p*-distance *d_p*(**u**, **v**) (for *p* ∈ [1, ∞])



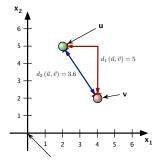
$$d_{p}(\mathbf{u},\mathbf{v}) := (|u_{1}-v_{1}|^{p} + \cdots + |u_{n}-v_{n}|^{p})^{1/p}$$

Distance between vectors
 u, v ∈ ℝⁿ → (dis)similarity of data points

•
$$\mathbf{u} = (u_1, \dots, u_n)$$

• $\mathbf{v} = (v_1, \dots, v_n)$

- Euclidean distance $d_2(\mathbf{u}, \mathbf{v})$
- "City block" Manhattan distance d₁ (u, v)
- Both are special cases of the Minkowski *p*-distance *d_p*(**u**, **v**) (for *p* ∈ [1,∞])



$$d_{p}(\mathbf{u},\mathbf{v}) := (|u_{1} - v_{1}|^{p} + \dots + |u_{n} - v_{n}|^{p})^{1/p}$$
$$d_{\infty}(\mathbf{u},\mathbf{v}) = \max\{|u_{1} - v_{1}|, \dots, |u_{n} - v_{n}|\}$$

Metric spaces

Metric: a measure of distance

• A metric is a general measure of the distance $d(\mathbf{u}, \mathbf{v})$ between points \mathbf{u} and \mathbf{v} , which satisfies the following **axioms**:

$$d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u})$$

•
$$d(\mathbf{u}, \mathbf{v}) > 0$$
 for $\mathbf{u} \neq \mathbf{v}$

- \blacktriangleright $d(\mathbf{u},\mathbf{u})=0$
- $d(\mathbf{u}, \mathbf{w}) \leq d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$ (triangle inequality)

Metric: a measure of distance

- A metric is a general measure of the distance $d(\mathbf{u}, \mathbf{v})$ between points **u** and **v**, which satisfies the following axioms:
 - \blacktriangleright $d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u})$
 - $d(\mathbf{u}, \mathbf{v}) > 0$ for $\mathbf{u} \neq \mathbf{v}$
 - \blacktriangleright $d(\mathbf{u},\mathbf{u})=0$
 - $d(\mathbf{u}, \mathbf{w}) \leq d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$ (triangle inequality)
- Metrics form a very broad class of distance measures, some of which do not fit in well with our geometric intuitions

Metric: a measure of distance

- A metric is a general measure of the distance $d(\mathbf{u}, \mathbf{v})$ between points **u** and **v**, which satisfies the following axioms:
 - \blacktriangleright $d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u})$
 - $d(\mathbf{u}, \mathbf{v}) > 0$ for $\mathbf{u} \neq \mathbf{v}$
 - \blacktriangleright $d(\mathbf{u},\mathbf{u})=0$
 - $d(\mathbf{u}, \mathbf{w}) \leq d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$ (triangle inequality)
- Metrics form a very broad class of distance measures, some of which do not fit in well with our geometric intuitions
- E.g., metric need not be translation-invariant

$$d(\mathbf{u} + \mathbf{x}, \mathbf{v} + \mathbf{x}) \neq d(\mathbf{u}, \mathbf{v})$$

Metric: a measure of distance

• A metric is a general measure of the distance $d(\mathbf{u}, \mathbf{v})$ between points **u** and **v**, which satisfies the following axioms:

$$\bullet \ d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u})$$

•
$$d(\mathbf{u}, \mathbf{v}) > 0$$
 for $\mathbf{u} \neq \mathbf{v}$

- $d(\mathbf{u}, \mathbf{u}) = 0$
- $d(\mathbf{u}, \mathbf{w}) \leq d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$ (triangle inequality)
- Metrics form a very broad class of distance measures, some of which do not fit in well with our geometric intuitions
- E.g., metric need not be translation-invariant

$$d(\mathbf{u} + \mathbf{x}, \mathbf{v} + \mathbf{x}) \neq d(\mathbf{u}, \mathbf{v})$$

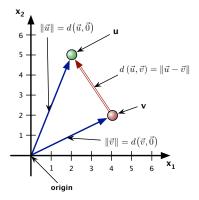
Another unintuitive example is the discrete metric

$$d(\mathbf{u},\mathbf{v}) = \begin{cases} 0 & \mathbf{u} = \mathbf{v} \\ 1 & \mathbf{u} \neq \mathbf{v} \end{cases}$$

Distance vs. norm

- Intuitively, distance
 d(u, v) should correspond
 to length ||u v|| of
 displacement vector u v
 - $d(\mathbf{u}, \mathbf{v})$ is a metric

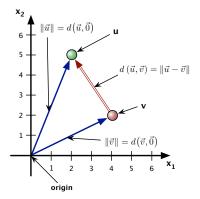
$$\bullet \|\mathbf{u}\| = d(\mathbf{u}, \mathbf{0})$$



→ Ξ >

Distance vs. norm

- Intuitively, distance *d*(u, v) should correspond to length ||u - v|| of displacement vector u - v
 - $d(\mathbf{u}, \mathbf{v})$ is a metric
 - ▶ ||u v|| is a norm
 - $\blacktriangleright \|\mathbf{u}\| = d(\mathbf{u}, \mathbf{0})$
- Such a metric is always translation-invariant

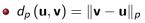


→ Ξ →

Vector norms

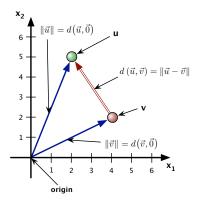
Distance vs. norm

- Intuitively, distance *d*(u, v) should correspond to length ||u - v|| of displacement vector u - v
 - $d(\mathbf{u}, \mathbf{v})$ is a metric
 - ▶ ||u v|| is a norm
 - $\bullet \|\mathbf{u}\| = d(\mathbf{u}, \mathbf{0})$
- Such a metric is always translation-invariant



• Minkowski *p*-norm for $p \in [1, \infty]$:

$$\|\mathbf{u}\|_{p} := (|u_{1}|^{p} + \cdots + |u_{n}|^{p})^{1/p}$$

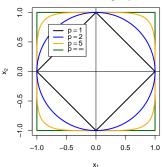


• • = • •

- A general **norm ||u||** for the length of a vector **u** must satisfy the following **axioms**:
 - $\|\mathbf{u}\| > 0$ for $\mathbf{u} \neq \mathbf{0}$
 - $\|\lambda \mathbf{u}\| = |\lambda| \cdot \|\mathbf{u}\|$ (homogeneity, not req'd for metric)
 - ▶ $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (triangle inequality)

- A general **norm ||u||** for the length of a vector **u** must satisfy the following **axioms**:
 - $\blacktriangleright \ \| u \| > 0 \text{ for } u \neq 0$
 - $\|\lambda \mathbf{u}\| = |\lambda| \cdot \|\mathbf{u}\|$ (homogeneity, not req'd for metric)
 - ▶ $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (triangle inequality)
- every norm defines a translation-invariant metric

$$d(\mathbf{u},\mathbf{v}) := \|\mathbf{u} - \mathbf{v}\|$$

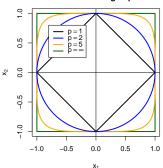


Unit circle according to p-norm

- Visualisation of norms in \mathbb{R}^2 by plotting **unit circle** for each norm, i.e. points **u** with $\|\mathbf{u}\| = 1$
- Here: *p*-norms $\|\cdot\|_p$ for different values of p

 $\exists \rightarrow$

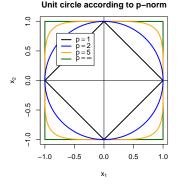
→ Ξ →



Unit circle according to p-norm

- Visualisation of norms in \mathbb{R}^2 by plotting **unit circle** for each norm, i.e. points **u** with $\|\mathbf{u}\| = 1$
- Here: *p*-norms ∥·∥_p for different values of *p*
- This shows that *p*-norms with *p* < 1 would violate the triangle inequality

(4 個)ト イヨト イヨト



- Visualisation of norms in R² by plotting unit circle for each norm, i.e. points u with ||u|| = 1
- Here: *p*-norms ∥·∥_p for different values of *p*
- Triangle inequality unit circle is convex
- This shows that *p*-norms with *p* < 1 would violate the triangle inequality

イロト イポト イヨト イヨト

• Consequence for DSM: $p \gg 2$ "favours" small differences in many coordinates, $p \ll 2$ differences in few coordinates

Operator and matrix norm

 The norm of a linear map (or "operator") f : U → V between normed vector spaces U and V is defined as

 $\|f\| := \max \{ \|f(\mathbf{u})\| \, | \, \mathbf{u} \in U, \|\mathbf{u}\| = 1 \}$

• ||f|| depends on the norms chosen in U and V!

Operator and matrix norm

 The norm of a linear map (or "operator") f : U → V between normed vector spaces U and V is defined as

 $\|f\| := \max \{ \|f(\mathbf{u})\| \, | \, \mathbf{u} \in U, \|\mathbf{u}\| = 1 \}$

• ||f|| depends on the norms chosen in U and V!

• The definition of the operator norm implies

 $\|f(\mathbf{u})\| \le \|f\| \cdot \|\mathbf{u}\|$

Operator and matrix norm

 The norm of a linear map (or "operator") f : U → V between normed vector spaces U and V is defined as

 $\|f\| := \max \{ \|f(\mathbf{u})\| \, | \, \mathbf{u} \in U, \|\mathbf{u}\| = 1 \}$

• ||f|| depends on the norms chosen in U and V!

• The definition of the operator norm implies

 $\|f(\mathbf{u})\| \le \|f\| \cdot \|\mathbf{u}\|$

- Norm of a matrix $\mathbf{A} = \text{norm of corresponding map } f$
 - ▶ NB: this is not the same as a *p*-norm of **A** in $\mathbb{R}^{k \cdot n}$
 - ► spectral norm induced by Euclidean vector norms in U and V = largest singular value of A (→ SVD)

• Choice of metric or norm is one of the parameters of a DSM

- Choice of metric or norm is one of the parameters of a DSM
- Measures of **distance** between points:
 - intuitive Euclidean norm $\| \cdot \|_2$
 - "city-block" Manhattan distance $\|\cdot\|_1$
 - maximum distance $\|\cdot\|_{\infty}$
 - general Minkowski *p*-norm $\|\cdot\|_p$
 - and many other formulae ...

- Choice of metric or norm is one of the parameters of a DSM
- Measures of **distance** between points:
 - intuitive Euclidean norm $\|\cdot\|_2$
 - "city-block" Manhattan distance $\|\cdot\|_1$
 - maximum distance $\|\cdot\|_{\infty}$
 - ▶ general Minkowski p-norm ||·||_p
 - and many other formulae ...
- Measures of the **similarity** of arrows:
 - "cosine distance" $\sim u_1v_1 + \cdots + u_nv_n$
 - Dice coefficient (matching non-zero coordinates)
 - and, of course, many other formulae ...
 - these measures determine angles between arrows

- Choice of metric or norm is one of the parameters of a DSM
- Measures of **distance** between points:
 - intuitive Euclidean norm $\|\cdot\|_2$
 - "city-block" Manhattan distance $\|\cdot\|_1$
 - maximum distance $\|\cdot\|_{\infty}$
 - ▶ general Minkowski p-norm ||·||_p
 - and many other formulae ...
- Measures of the similarity of arrows:
 - "cosine distance" $\sim u_1v_1 + \cdots + u_nv_n$
 - Dice coefficient (matching non-zero coordinates)
 - and, of course, many other formulae ...
 - these measures determine angles between arrows
- Similarity and distance measures are equivalent!
 - I'm a fan of the Euclidean norm because of its intuitive geometric properties (angles, orthogonality, shortest path, ...)

with R

Norms & distance measures in R

We will use the cooccurrence matrix **M** from the last session

> print(M)

	eat	get	hear	kill	see	use
boat	0	59	4	0	39	23
cat	6	52	4	26	58	4
cup	1	98	2	0	14	6
dog	33	115	42	17	83	10
knife	3	51	0	0	20	84
pig	9	12	2	27	17	3

Note: you can save selected variables with the save() command, # and restore them in your next session (similar to saving R's workspace) > save(M, O, E, M.mds, file="dsm_lab.RData")

load() restores the variables under the same names! > load("dsm lab.RData")

Norms & distance measures in R

Define functions for general Minkowski norm and distance; # parameter p is optional and defaults to p = 2 > p.norm <- function (x, p=2) (sum(abs(x)^p))^(1/p) > p.dist <- function (x, y, p=2) p.norm(x - y, p)</pre>

> round(apply(M, 1, p.norm, p=1), 2) boat cat cup dog knife pig 150 121 300 158 125 70 > round(apply(M, 1, p.norm, p=2), 2) cat cup dog knife pig boat 74.48 82.53 99.20 152.83 100.33 35.44 > round(apply(M, 1, p.norm, p=4), 2) boat cat cup dog knife pig 61.93 66.10 98.01 122.71 86.78 28.31 > round(apply(M, 1, p.norm, p=99), 2) boat cat cup dog knife pig 59 58 98 115 84 27

Norms & distance measures in R

Here's a nice trick to normalise the row vectors quickly

> normalise <- function (M, p=2) M / apply(M, 1, p.norm, p=p)</pre>

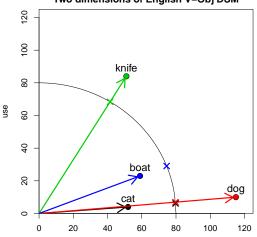
Try different *p*-norms: how do the distances change?

- > round(dist(normalise(M, p=2), method="minkowski", p=2), 2)
- > round(dist(normalise(M, p=4), method="minkowski", p=4), 2)
- > round(dist(normalise(M, p=99), method="minkowski", p=99), 2)

イロト 不得 トイヨト イヨト 二日

Why it is important to normalise vectors

before computing a distance matrix



Two dimensions of English V-Obj DSM

get

Evert & Lenci (ESSLLI 2009)

Euclidean norm & inner product

• The Euclidean norm $\|\mathbf{u}\|_2 = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$ is special because it can be derived from the inner product:

$$\langle \mathbf{u}, \mathbf{v} \rangle := \mathbf{x}^T \mathbf{y} = x_1 y_1 + \dots + x_n y_n$$

where $\mathbf{u} \equiv_E \mathbf{x}$ and $\mathbf{v} \equiv_E \mathbf{y}$ are the standard coordinates of \mathbf{u} and \mathbf{v} (certain other coordinate systems also work)

Euclidean norm & inner product

• The Euclidean norm $\|\mathbf{u}\|_2 = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$ is special because it can be derived from the inner product:

$$\langle \mathbf{u}, \mathbf{v} \rangle := \mathbf{x}^T \mathbf{y} = x_1 y_1 + \dots + x_n y_n$$

where $\mathbf{u} \equiv_E \mathbf{x}$ and $\mathbf{v} \equiv_E \mathbf{y}$ are the standard coordinates of \mathbf{u} and \mathbf{v} (certain other coordinate systems also work)

• The inner product is a **positive definite** and **symmetric bilinear form** with the following properties:

$$\blacktriangleright \ \langle \lambda \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \lambda \mathbf{v} \rangle = \lambda \, \langle \mathbf{u}, \mathbf{v} \rangle$$

$$\blacktriangleright \ \langle \mathbf{u} + \mathbf{u}', \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}', \mathbf{v} \rangle$$

$$\blacktriangleright \langle \mathbf{u}, \mathbf{v} + \mathbf{v}' \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{v}' \rangle$$

•
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$
 (symmetric)

- $\langle \mathbf{u}, \mathbf{u} \rangle = \|\mathbf{u}\|^2 > 0$ for $\mathbf{u} \neq \mathbf{0}$ (positive definite)
- also called dot product or scalar product

イロト 不得下 イヨト イヨト 二日

Angles and orthogonality

 The Euclidean inner product has an important geometric interpretation → angles and orthogonality

Angles and orthogonality

- The Euclidean inner product has an important geometric interpretation → angles and orthogonality
- Cauchy-Schwarz inequality:

 $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \cdot \|\mathbf{v}\|$

Angles and orthogonality

- The Euclidean inner product has an important geometric interpretation → angles and orthogonality
- Cauchy-Schwarz inequality:

 $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \cdot \|\mathbf{v}\|$

• Angle ϕ between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$:

$$\cos\phi := rac{\langle \mathbf{u}, \mathbf{v}
angle}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|}$$

• $\cos \phi$ is the "cosine similarity" measure

Angles and orthogonality

- The Euclidean inner product has an important geometric interpretation → angles and orthogonality
- Cauchy-Schwarz inequality:

 $\big| \langle \mathbf{u}, \mathbf{v} \rangle \big| \leq \| \mathbf{u} \| \cdot \| \mathbf{v} \|$

• Angle ϕ between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$:

$$\cos\phi := \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|}$$

- \blacktriangleright cos ϕ is the "cosine similarity" measure
- $\bullet~$ u and v are orthogonal iff $\langle u,v\rangle=0$
 - ► the shortest connection between a point u and a subspace U is orthogonal to all vectors v ∈ U

Cosine similarity in R

The dist() function does not calculate the cosine measure (because it is a similarity rather than distance value), but:

Matrix of cosine similarities between rows of M:

> M.norm <- normalise(M, p=2) # only works with Euclidean norm! > M.norm %*% t(M.norm)

Euclidean distance or cosine similarity?

• Which is better, Euclidean distance or cosine similarity?

Euclidean distance or cosine similarity?

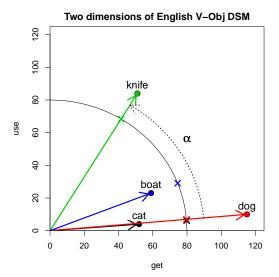
- Which is better, Euclidean distance or cosine similarity?
- They are equivalent: if vectors are normalised ($\|\mathbf{u}\|_2 = 1$), both lead to the same neighbour ranking

Euclidean distance or cosine similarity?

- Which is better, Euclidean distance or cosine similarity?
- They are equivalent: if vectors are normalised ($\|\mathbf{u}\|_2 = 1$), both lead to the same neighbour ranking

$$d_{2}(\mathbf{u}, \mathbf{v}) = \sqrt{\|\mathbf{u} - \mathbf{v}\|_{2}} = \sqrt{\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle}$$
$$= \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle - 2 \langle \mathbf{u}, \mathbf{v} \rangle}$$
$$= \sqrt{\|\mathbf{u}\|_{2} + \|\mathbf{v}\|_{2} - 2 \langle \mathbf{u}, \mathbf{v} \rangle}$$
$$= \sqrt{2 - 2\cos\phi}$$

Euclidean distance and cosine similarity



Evert & Lenci (ESSLLI 2009)

Cartesian coordinates

• A set of vectors $\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(n)}$ is called **orthonormal** if the vectors are pairwise orthogonal and of unit length:

•
$$\langle \mathbf{b}^{(j)}, \mathbf{b}^{(k)} \rangle = 0$$
 for $j \neq k$

$$\bullet \langle \mathbf{b}^{(k)}, \mathbf{b}^{(k)} \rangle = \left\| \mathbf{b}^{(k)} \right\|^2 = 1$$

• An orthonormal basis and the corresponding coordinates are called **Cartesian**

Cartesian coordinates

• A set of vectors $\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(n)}$ is called **orthonormal** if the vectors are pairwise orthogonal and of unit length:

•
$$\langle \mathbf{b}^{(j)}, \mathbf{b}^{(k)} \rangle = 0$$
 for $j \neq k$

$$\flat \langle \mathbf{b}^{(k)}, \mathbf{b}^{(k)} \rangle = \left\| \mathbf{b}^{(k)} \right\|^2 = 1$$

- An orthonormal basis and the corresponding coordinates are called **Cartesian**
- Cartesian coordinates are particularly intuitive, and the inner product has the same form wrt. every Cartesian basis B: for u ≡_B x' and v ≡_B y', we have

$$\langle \mathbf{u}, \mathbf{v} \rangle = (\mathbf{x}')^T \mathbf{y}' = x'_1 y'_1 + \dots + x'_n y'_n$$

- NB: the column vectors of the matrix **B** are orthonormal
 - ► recall that the columns of B specify the standard coordinates of the vectors b⁽¹⁾,..., b⁽ⁿ⁾

Orthogonal projection

• Cartesian coordinates $\mathbf{u} \equiv_B \mathbf{x}$ can easily be computed:

$$\left\langle \mathbf{u}, \mathbf{b}^{(k)} \right\rangle = \left\langle \sum_{j=1}^{n} x_j \mathbf{b}^{(j)}, \mathbf{b}^{(k)} \right\rangle$$
$$= \sum_{j=1}^{n} x_j \underbrace{\left\langle \mathbf{b}^{(j)}, \mathbf{b}^{(k)} \right\rangle}_{=\delta_{jk}} = x_k$$

• Kronecker delta: $\delta_{jk} = 1$ for j = k and 0 for $j \neq k$

Evert & Lenci (ESSLLI 2009)

Orthogonal projection

• Cartesian coordinates $\mathbf{u} \equiv_B \mathbf{x}$ can easily be computed:

$$\left\langle \mathbf{u}, \mathbf{b}^{(k)} \right\rangle = \left\langle \sum_{j=1}^{n} x_j \mathbf{b}^{(j)}, \mathbf{b}^{(k)} \right\rangle$$
$$= \sum_{j=1}^{n} x_j \underbrace{\left\langle \mathbf{b}^{(j)}, \mathbf{b}^{(k)} \right\rangle}_{=\delta_{jk}} = x_k$$

• Kronecker delta: $\delta_{jk} = 1$ for j = k and 0 for $j \neq k$

• Orthogonal projection $P_V : \mathbb{R}^n \to V$ to subspace $V := sp(\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(k)})$ (for k < n) is given by

$$P_V \mathbf{u} := \sum_{j=1}^k \mathbf{b}^{(j)} \left\langle \mathbf{u}, \mathbf{b}^{(j)} \right\rangle$$

Hyperplanes & normal vectors

A hyperplane is the decision boundary of a linear classifier!

• A hyperplane $U \subseteq \mathbb{R}^n$ through the origin **0** can be characterized by the equation

$$U = \left\{ \mathbf{u} \in \mathbb{R}^n \mid \langle \mathbf{u}, \mathbf{n} \rangle = 0 \right\}$$

for a suitable $\mathbf{n} \in \mathbb{R}^n$ with $\|\mathbf{n}\| = 1$

• **n** is called the **normal vector** of U

Hyperplanes & normal vectors

A hyperplane is the decision boundary of a linear classifier!

• A hyperplane $U \subseteq \mathbb{R}^n$ through the origin $\mathbf{0}$ can be characterized by the equation

$$U = \left\{ \mathbf{u} \in \mathbb{R}^n \mid \langle \mathbf{u}, \mathbf{n} \rangle = \mathbf{0} \right\}$$

for a suitable $\mathbf{n} \in \mathbb{R}^n$ with $\|\mathbf{n}\| = 1$

- **n** is called the **normal vector** of U
- The orthogonal projection P_U into U is given by

$$P_U \mathbf{v} := \mathbf{v} - \mathbf{n} \langle \mathbf{v}, \mathbf{n} \rangle$$

Hyperplanes & normal vectors

A hyperplane is the decision boundary of a linear classifier!

 A hyperplane U ⊆ ℝⁿ through the origin 0 can be characterized by the equation

$$U = \left\{ \mathbf{u} \in \mathbb{R}^n \mid \langle \mathbf{u}, \mathbf{n} \rangle = \mathbf{0} \right\}$$

for a suitable $\mathbf{n} \in \mathbb{R}^n$ with $\|\mathbf{n}\| = 1$

- **n** is called the **normal vector** of U
- The orthogonal projection P_U into U is given by

$$P_U \mathbf{v} := \mathbf{v} - \mathbf{n} \langle \mathbf{v}, \mathbf{n} \rangle$$

• An arbitrary hyperplane $\Gamma \subseteq \mathbb{R}^n$ can analogously be characterized by

$$\Gamma = \left\{ \mathbf{u} \in \mathbb{R}^n \mid \langle \mathbf{u}, \mathbf{n} \rangle = a \right\}$$

where $a \in \mathbb{R}$ is the (signed) **distance** of Γ from **0**

Orthogonal matrices

- A matrix A whose column vectors are orthonormal is called an orthogonal matrix
- **A**^T is orthogonal iff **A** is orthogonal

- 4 E

- - ∃ →

Orthogonal matrices

- A matrix **A** whose column vectors are orthonormal is called an **orthogonal** matrix
- \mathbf{A}^{T} is orthogonal iff \mathbf{A} is orthogonal
- The **inverse** of an orthogonal matrix is simply its transpose:

 $\mathbf{A}^{-1} = \mathbf{A}^{T}$ if \mathbf{A} is orthogonal

- it is easy to show A^TA = I by matrix multiplication, since the columns of A are orthonormal
- ► since \mathbf{A}^T is also orthogonal, it follows that $\mathbf{A}\mathbf{A}^T = (\mathbf{A}^T)^T \mathbf{A}^T = \mathbf{I}$
- ► side remark: the transposition operator ·^T is called an involution because (A^T)^T = A

- An endomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ is called an isometry iff $\langle f(\mathbf{u}), f(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$
- Geometric interpretation: isometries preserve angles and distances (which are defined in terms of $\langle\cdot,\cdot\rangle)$

- An endomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ is called an isometry iff $\langle f(\mathbf{u}), f(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$
- Geometric interpretation: isometries preserve angles and distances (which are defined in terms of $\langle\cdot,\cdot\rangle$)
- f is an isometry iff its matrix **A** is orthogonal

- An endomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ is called an isometry iff $\langle f(\mathbf{u}), f(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$
- Geometric interpretation: isometries preserve angles and distances (which are defined in terms of $\langle\cdot,\cdot\rangle$)
- f is an isometry iff its matrix **A** is orthogonal
- Coordinate transformations between Cartesian systems are isometric (because B and B⁻¹ = B^T are orthogonal)

- An endomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ is called an isometry iff $\langle f(\mathbf{u}), f(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$
- Geometric interpretation: isometries preserve angles and distances (which are defined in terms of $\langle\cdot,\cdot\rangle$)
- f is an isometry iff its matrix **A** is orthogonal
- Coordinate transformations between Cartesian systems are isometric (because **B** and $\mathbf{B}^{-1} = \mathbf{B}^{T}$ are orthogonal)
- Every isometric endomorphism of \mathbb{R}^n can be written as a combination of **planar rotations** and **axial reflections** in a suitable Cartesian coordinate system

$$R_{\phi}^{(1,3)} = \begin{bmatrix} \cos\phi & 0 & -\sin\phi \\ 0 & 1 & 0 \\ \sin\phi & 0 & \cos\phi \end{bmatrix}, \quad Q^{(2)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• The column vectors of an orthogonal $n \times n$ matrix **B** form a Cartesian basis $\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(n)}$ of \mathbb{R}^n

- The column vectors of an orthogonal $n \times n$ matrix **B** form a Cartesian basis $\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(n)}$ of \mathbb{R}^n
- $\mathbf{B}^{-1} = \mathbf{B}^T$, i.e. we have $\mathbf{B}^T \mathbf{B} = \mathbf{B} \mathbf{B}^T = \mathbf{I}$

- The column vectors of an orthogonal $n \times n$ matrix **B** form a Cartesian basis $\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(n)}$ of \mathbb{R}^n
- $\mathbf{B}^{-1} = \mathbf{B}^{T}$, i.e. we have $\mathbf{B}^{T}\mathbf{B} = \mathbf{B}\mathbf{B}^{T} = \mathbf{I}$
- The coordinate transformation **B**^T into *B*-coordinates is an isometry, i.e. all distances and angles are preserved

- The column vectors of an orthogonal $n \times n$ matrix **B** form a Cartesian basis $\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(n)}$ of \mathbb{R}^n
- $\mathbf{B}^{-1} = \mathbf{B}^{T}$, i.e. we have $\mathbf{B}^{T}\mathbf{B} = \mathbf{B}\mathbf{B}^{T} = \mathbf{I}$
- The coordinate transformation **B**^T into *B*-coordinates is an isometry, i.e. all distances and angles are preserved
- The first k < n columns of B form a Cartesian basis of a subspace V = sp (b⁽¹⁾,..., b^(k)) of ℝⁿ

- The column vectors of an orthogonal $n \times n$ matrix **B** form a Cartesian basis $\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(n)}$ of \mathbb{R}^n
- $\mathbf{B}^{-1} = \mathbf{B}^{T}$, i.e. we have $\mathbf{B}^{T}\mathbf{B} = \mathbf{B}\mathbf{B}^{T} = \mathbf{I}$
- The coordinate transformation **B**^T into *B*-coordinates is an isometry, i.e. all distances and angles are preserved
- The first k < n columns of B form a Cartesian basis of a subspace V = sp (b⁽¹⁾,..., b^(k)) of ℝⁿ
- The corresponding rectangular matrix **Â** = [**b**⁽¹⁾,...,**b**^(k)] performs an orthogonal projection into V:

$$P_{V}\mathbf{u} \equiv_{B} \hat{\mathbf{B}}^{T}\mathbf{x} \quad (\text{for } \mathbf{u} \equiv_{E} \mathbf{x})$$
$$\equiv_{E} \hat{\mathbf{B}}\hat{\mathbf{B}}^{T}\mathbf{x}$$

➡ These properties will become important later today!

- Can we also introduce geometric notions such as angles and orthogonality for other metrics, e.g. the Manhattan distance?
 - ${}^{\scriptsize\mbox{\scriptsize \sc osc}}$ norm must be derived from appropriate inner product

- Can we also introduce geometric notions such as angles and orthogonality for other metrics, e.g. the Manhattan distance?
 norm must be derived from appropriate inner product
- General inner products are defined by

$$\langle \mathbf{u}, \mathbf{v} \rangle_B := (\mathbf{x}')^T \mathbf{y}' = x'_1 y'_1 + \dots + x'_y y'_n$$

wrt. non-Cartesian basis B ($\mathbf{u} \equiv_B \mathbf{x}', \mathbf{v} \equiv_B \mathbf{y}'$)

- Can we also introduce geometric notions such as angles and orthogonality for other metrics, e.g. the Manhattan distance?
 Image: norm must be derived from appropriate inner product
- General inner products are defined by

$$\langle \mathbf{u}, \mathbf{v} \rangle_B := (\mathbf{x}')^T \mathbf{y}' = x'_1 y'_1 + \dots + x'_y y'_n$$

wrt. non-Cartesian basis B ($\mathbf{u} \equiv_B \mathbf{x}', \mathbf{v} \equiv_B \mathbf{y}'$)

• $\langle \cdot, \cdot \rangle_B$ can be expressed in standard coordinates $\mathbf{u} \equiv_E \mathbf{x}$, $\mathbf{v} \equiv_E \mathbf{y}$ using the transformation matrix **B**:

$$\begin{aligned} \langle \mathbf{u}, \mathbf{v} \rangle_B &= (\mathbf{x}')^T \mathbf{y}' = \left(\mathbf{B}^{-1} \mathbf{x} \right)^T \left(\mathbf{B}^{-1} \mathbf{y} \right) \\ &= \mathbf{x}^T (\mathbf{B}^{-1})^T \mathbf{B}^{-1} \mathbf{y} =: \mathbf{x}^T \mathbf{C} \mathbf{y} \end{aligned}$$

 The coefficient matrix C := (B⁻¹)^TB⁻¹ of the general inner product is symmetric

$$\mathbf{C}^{\mathsf{T}} = (\mathbf{B}^{-1})^{\mathsf{T}} ((\mathbf{B}^{-1})^{\mathsf{T}})^{\mathsf{T}} = (\mathbf{B}^{-1})^{\mathsf{T}} \mathbf{B}^{-1} = \mathbf{C}$$

 The coefficient matrix C := (B⁻¹)^TB⁻¹ of the general inner product is symmetric

$$\mathbf{C}^{\mathsf{T}} = (\mathbf{B}^{-1})^{\mathsf{T}} ((\mathbf{B}^{-1})^{\mathsf{T}})^{\mathsf{T}} = (\mathbf{B}^{-1})^{\mathsf{T}} \mathbf{B}^{-1} = \mathbf{C}$$

and **positive definite**

$$\mathbf{x}^{T}\mathbf{C}\mathbf{x} = \left(\mathbf{B}^{-1}\mathbf{x}\right)^{T}\left(\mathbf{B}^{-1}\mathbf{x}\right) = (\mathbf{x}')^{T}\mathbf{x}' \ge 0$$

• The coefficient matrix $\mathbf{C} := (\mathbf{B}^{-1})^T \mathbf{B}^{-1}$ of the general inner product is symmetric

$$\mathbf{C}^{\mathsf{T}} = (\mathbf{B}^{-1})^{\mathsf{T}} ((\mathbf{B}^{-1})^{\mathsf{T}})^{\mathsf{T}} = (\mathbf{B}^{-1})^{\mathsf{T}} \mathbf{B}^{-1} = \mathbf{C}$$

and **positive definite**

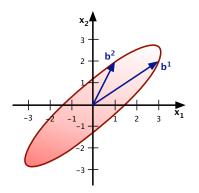
$$\mathbf{x}^{T}\mathbf{C}\mathbf{x} = (\mathbf{B}^{-1}\mathbf{x})^{T}(\mathbf{B}^{-1}\mathbf{x}) = (\mathbf{x}')^{T}\mathbf{x}' \ge 0$$

- It is (relatively) easy to show that every positive definite and symmetric bilinear form can be written in this way.
 - I.e. every norm that is derived from an inner product can be expressed in terms of a coefficient matrix C or basis B

An example:

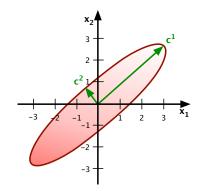
- $\mathbf{b}^{(1)} = (3, 2), \ \mathbf{b}^{(2)} = (1, 2)$ • $\mathbf{B} = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$ • $\mathbf{B}^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{2} & \frac{3}{4} \end{bmatrix}$ • $\mathbf{C} = \begin{bmatrix} .5 & -.5 \\ -.5 & .625 \end{bmatrix}$
- Graph shows **unit circle** of the inner product **C**, i.e. points **x** with

$$\mathbf{x}^T \mathbf{C} \mathbf{x} = 1$$

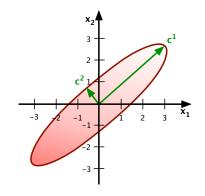


• • = • • = •

- C is a symmetric matrix
- There is always an orthonormal basis such that C has diagonal form
- "Standard" dot product with additional scaling factors (wrt. this orthonormal basis)
- Intuition: unit circle is a squashed and rotated disk



- C is a symmetric matrix
- There is always an orthonormal basis such that C has diagonal form
- "Standard" dot product with additional scaling factors (wrt. this orthonormal basis)
- Intuition: unit circle is a squashed and rotated disk



Every "geometric" norm is equivalent to the Euclidean norm except for a rotation and rescaling of the axes

Motivating latent dimensions: example data

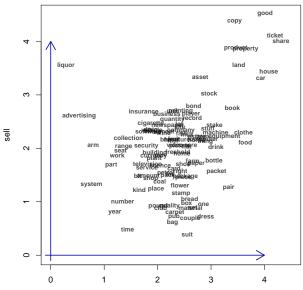
PCA

- Example: term-term matrix
- V-Obj cooc's extracted from BNC
 - targets = noun lemmas
 - features = verb lemmas
- feature scaling: association scores (modified log Dice coefficient)
- k = 111 nouns with f ≥ 20 (must have non-zero row vectors)
- n = 2 dimensions: buy and sell

noun	buy	sell
bond	0.28	0.77
cigarette	-0.52	0.44
dress	0.51	-1.30
freehold	-0.01	-0.08
land	1.13	1.54
number	-1.05	-1.02
per	-0.35	-0.16
pub	-0.08	-1.30
share	1.92	1.99
system	-1.63	-0.70

Motivating latent dimensions & subspace projection

PCA



buy

Evert & Lenci (ESSLLI 2009)

30 July 2009 31 / 48

-

Motivating latent dimensions & subspace projection

- The **latent property** of being a commodity is "expressed" through associations with several verbs: *sell, buy, acquire, ...*
- Consequence: these DSM dimensions will be correlated

Motivating latent dimensions & subspace projection

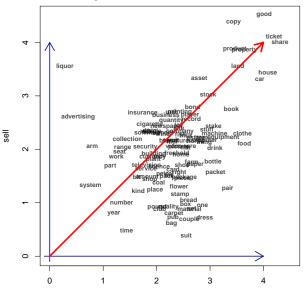
- The **latent property** of being a commodity is "expressed" through associations with several verbs: *sell, buy, acquire, ...*
- Consequence: these DSM dimensions will be correlated
- Identify **latent dimension** by looking for strong correlations (or weaker correlations between large sets of features)

Motivating latent dimensions & subspace projection

- The **latent property** of being a commodity is "expressed" through associations with several verbs: *sell, buy, acquire, ...*
- Consequence: these DSM dimensions will be correlated
- Identify **latent dimension** by looking for strong correlations (or weaker correlations between large sets of features)
- Projection into subspace V of k < n latent dimensions as a "noise reduction" technique → LSA
- Assumptions of this approach:
 - ▶ "latent" distances in V are semantically meaningful
 - other "residual" dimensions represent chance co-occurrence patterns, often particular to the corpus underlying the DSM

イロト イポト イヨト イヨト

The latent "commodity" dimension



buy

Evert & Lenci (ESSLLI 2009)

< 回 ト < 三 ト < 三 ト

The variance of a data set

• Rationale: find the dimensions that give the best (statistical) explanation for the variance (or "spread") of the data

PCA

- Definition of the variance of a set of vectors
 - you remember the equations for one-dimensional data, right?

The variance of a data set

• Rationale: find the dimensions that give the best (statistical) explanation for the variance (or "spread") of the data

PCA

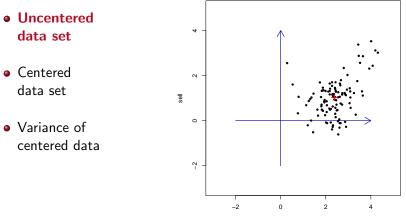
- Definition of the variance of a set of vectors
 - you remember the equations for one-dimensional data, right?

$$\sigma^2 = \frac{1}{k-1} \sum_{i=1}^k \|\mathbf{x}^{(i)} - \boldsymbol{\mu}\|^2$$
$$\boldsymbol{\mu} = \frac{1}{k} \sum_{i=1}^k \mathbf{x}^{(i)}$$

• Easier to calculate if we center the data so that $\mu = \mathbf{0}$

PCA

Centering the data set

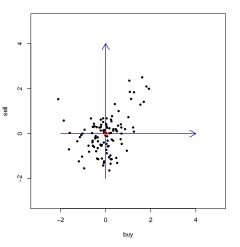


buy

PCA

Centering the data set

- Uncentered data set
- Centered data set
- Variance of centered data



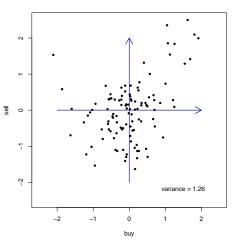
Evert & Lenci (ESSLLI 2009)

PCA

Centering the data set

- Uncentered data set
- Centered data set
- Variance of centered data

$$\sigma^2 = \frac{1}{k-1} \sum_{i=1}^k \|\mathbf{x}^{(i)}\|^2$$



• We want to project the data points to a lower-dimensional subspace, but preserve distances as well as possible

Image: A matrix

- We want to project the data points to a lower-dimensional subspace, but preserve distances as well as possible
- Insight 1: variance = average squared distance

$$\frac{1}{k(k-1)}\sum_{i=1}^{k}\sum_{j=1}^{k}\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\|^{2} = \frac{2}{k-1}\sum_{i=1}^{k}\|\mathbf{x}^{(i)}\|^{2} = 2\sigma^{2}$$

- We want to project the data points to a lower-dimensional subspace, but preserve distances as well as possible
- Insight 1: variance = average squared distance

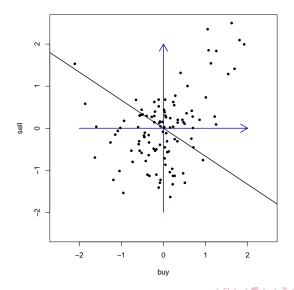
$$\frac{1}{k(k-1)}\sum_{i=1}^{k}\sum_{j=1}^{k}\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\|^{2} = \frac{2}{k-1}\sum_{i=1}^{k}\|\mathbf{x}^{(i)}\|^{2} = 2\sigma^{2}$$

Insight 2: orthogonal projection always reduces distances
 → difference in squared distances = loss of variance

- We want to project the data points to a lower-dimensional subspace, but preserve distances as well as possible
- Insight 1: variance = average squared distance

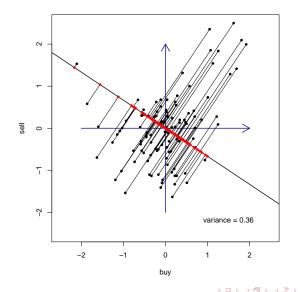
$$\frac{1}{k(k-1)}\sum_{i=1}^{k}\sum_{j=1}^{k}\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\|^{2} = \frac{2}{k-1}\sum_{i=1}^{k}\|\mathbf{x}^{(i)}\|^{2} = 2\sigma^{2}$$

- Insight 2: orthogonal projection always reduces distances
 difference in squared distances = loss of variance
- If we reduced the data set to just a single dimension, which dimension would still have the highest variance?
- Mathematically, we project the points onto a line through the origin and calculate one-dimensional variance on this line
 - we'll see in a moment how to compute such projections
 - but first, let us look at a few examples



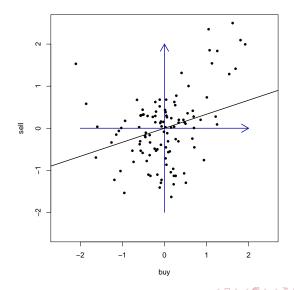
Evert & Lenci (ESSLLI 2009)

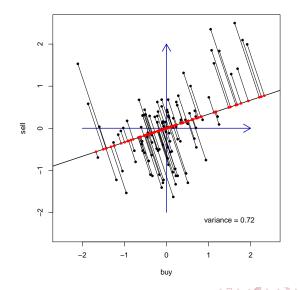
30 July 2009 37 / 48

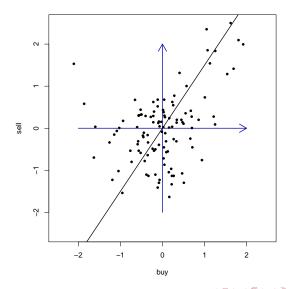


Evert & Lenci (ESSLLI 2009)

30 July 2009 37 / 48

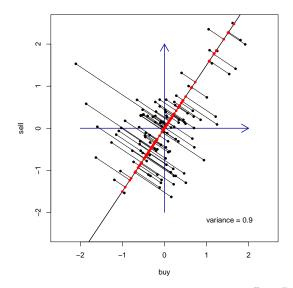






Evert & Lenci (ESSLLI 2009)

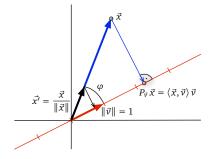
30 July 2009 37 / 48



∃ >

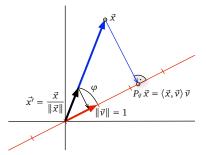
The mathematics of projections

- Line through origin given by unit vector $\|\mathbf{v}\| = 1$
- For a point x and the corresponding unit vector x' = x/||x||, we have cos φ = (x', v)



The mathematics of projections

- Line through origin given by unit vector $\|\mathbf{v}\| = 1$
- For a point x and the corresponding unit vector x' = x/||x||, we have cos φ = ⟨x', ν⟩



- Trigonometry: position of projected point on the line is $\|\mathbf{x}\| \cdot \cos \varphi = \|\mathbf{x}\| \cdot \langle \mathbf{x}', \mathbf{v} \rangle = \langle \mathbf{x}, \mathbf{v} \rangle$
- Preserved variance = one-dimensional variance on the line (note that data set is still centered after projection)

$$\sigma_{\mathbf{v}}^2 = rac{1}{k-1}\sum_{i=1}^k \left< \mathbf{x}_i, \mathbf{v} \right>^2$$

Covariance matrix

The covariance matrix

• Find the direction **v** with maximal $\sigma_{\mathbf{v}}^2$, which is given by:

$$\sigma_{\mathbf{v}}^2 = \frac{1}{k-1} \sum_{i=1}^k \langle \mathbf{x}_i, \mathbf{v} \rangle^2$$

イロト イポト イヨト イヨ

• Find the direction **v** with maximal $\sigma_{\mathbf{v}}^2$, which is given by:

$$\sigma_{\mathbf{v}}^{2} = \frac{1}{k-1} \sum_{i=1}^{k} \langle \mathbf{x}_{i}, \mathbf{v} \rangle^{2}$$
$$= \frac{1}{k-1} \sum_{i=1}^{k} \left(\mathbf{x}_{i}^{T} \mathbf{v} \right)^{T} \cdot \left(\mathbf{x}_{i}^{T} \mathbf{v} \right)$$

Image: A match a ma

• Find the direction **v** with maximal $\sigma_{\mathbf{v}}^2$, which is given by:

$$\sigma_{\mathbf{v}}^{2} = \frac{1}{k-1} \sum_{i=1}^{k} \langle \mathbf{x}_{i}, \mathbf{v} \rangle^{2}$$
$$= \frac{1}{k-1} \sum_{i=1}^{k} \left(\mathbf{x}_{i}^{T} \mathbf{v} \right)^{T} \cdot \left(\mathbf{x}_{i}^{T} \mathbf{v} \right)$$
$$= \frac{1}{k-1} \sum_{i=1}^{k} \mathbf{v}^{T} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{v}$$

イロト イポト イヨト イヨ

• Find the direction **v** with maximal $\sigma_{\mathbf{v}}^2$, which is given by:

$$\sigma_{\mathbf{v}}^{2} = \frac{1}{k-1} \sum_{i=1}^{k} \langle \mathbf{x}_{i}, \mathbf{v} \rangle^{2}$$
$$= \frac{1}{k-1} \sum_{i=1}^{k} \left(\mathbf{x}_{i}^{T} \mathbf{v} \right)^{T} \cdot \left(\mathbf{x}_{i}^{T} \mathbf{v} \right)$$
$$= \frac{1}{k-1} \sum_{i=1}^{k} \mathbf{v}^{T} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{v}$$
$$= \mathbf{v}^{T} \left(\frac{1}{k-1} \sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{v}$$

Image: A match a ma

• Find the direction **v** with maximal $\sigma_{\mathbf{v}}^2$, which is given by:

$$\sigma_{\mathbf{v}}^{2} = \frac{1}{k-1} \sum_{i=1}^{k} \langle \mathbf{x}_{i}, \mathbf{v} \rangle^{2}$$
$$= \frac{1}{k-1} \sum_{i=1}^{k} \left(\mathbf{x}_{i}^{T} \mathbf{v} \right)^{T} \cdot \left(\mathbf{x}_{i}^{T} \mathbf{v} \right)$$
$$= \frac{1}{k-1} \sum_{i=1}^{k} \mathbf{v}^{T} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{v}$$
$$= \mathbf{v}^{T} \left(\frac{1}{k-1} \sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{v}$$
$$= \mathbf{v}^{T} \mathbf{C} \mathbf{v}$$

Image: A match a ma

- C is the covariance matrix of the data points
 - **C** is a square $n \times n$ matrix (2 × 2 in our example)
- Preserved variance after projection onto a line **v** can easily be calculated as $\sigma_{\mathbf{v}}^2 = \mathbf{v}^T \mathbf{C} \mathbf{v}$

- C is the covariance matrix of the data points
 - **C** is a square $n \times n$ matrix (2 × 2 in our example)
- Preserved variance after projection onto a line **v** can easily be calculated as $\sigma_{\mathbf{v}}^2 = \mathbf{v}^T \mathbf{C} \mathbf{v}$
- The original variance of the data set is given by $\sigma^2 = tr(\mathbf{C}) = C_{11} + C_{22} + \dots + C_{nn}$

$$\mathbf{C} = \begin{pmatrix} \sigma_1^2 & C_{12} & \cdots & C_{1n} \\ C_{21} & \sigma_2^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & C_{n-1,n} \\ C_{n1} & \cdots & C_{n,n-1} & \sigma_n^2 \end{pmatrix}$$

 In our example, we want to find the axis v₁ that preserves the largest amount of variance by maximizing v₁^TCv₁

- In our example, we want to find the axis v₁ that preserves the largest amount of variance by maximizing v₁^TCv₁
- For higher-dimensional data set, we also want to find the axis **v**₂ with the second largest amount of variance, etc.
 - Should not include variance that has already been accounted for: \mathbf{v}_2 must be orthogonal to \mathbf{v}_1 , i.e. $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$

- In our example, we want to find the axis v₁ that preserves the largest amount of variance by maximizing v₁^TCv₁
- For higher-dimensional data set, we also want to find the axis **v**₂ with the second largest amount of variance, etc.
 - Should not include variance that has already been accounted for: \mathbf{v}_2 must be orthogonal to \mathbf{v}_1 , i.e. $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$
- Orthogonal dimensions $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots$ partition variance:

$$\sigma^2 = \sigma_{\mathbf{v}^{(1)}}^2 + \sigma_{\mathbf{v}^{(2)}}^2 + \dots$$

- In our example, we want to find the axis v₁ that preserves the largest amount of variance by maximizing v₁^TCv₁
- For higher-dimensional data set, we also want to find the axis **v**₂ with the second largest amount of variance, etc.
 - Should not include variance that has already been accounted for: \mathbf{v}_2 must be orthogonal to \mathbf{v}_1 , i.e. $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$
- Orthogonal dimensions **v**⁽¹⁾, **v**⁽²⁾, ... partition variance:

$$\sigma^2 = \sigma_{\mathbf{v}^{(1)}}^2 + \sigma_{\mathbf{v}^{(2)}}^2 + \dots$$

Useful result from linear algebra: every symmetric matrix
 C = C^T has an eigenvalue decomposition with orthogonal eigenvectors a₁, a₂, ..., a_n and corresponding eigenvalues λ₁ ≥ λ₂ ≥ ··· ≥ λ_n

イロト 不得下 イヨト イヨト 二日

Eigenvalue decomposition

• The eigenvalue decomposition of C can be written in the form

 $\mathbf{C} = \mathbf{U} \cdot \mathbf{D} \cdot \mathbf{U}^{\mathcal{T}}$

where **U** is an orthogonal matrix of eigenvectors (columns) and **D** = $Diag(\lambda_1, ..., \lambda_n)$ a diagonal matrix of eigenvalues

• note that both **U** and **D** are $n \times n$ square matrices

Evert & Lenci (ESSLLI 2009)

• With the eigenvalue decomposition of C, we have

$$\sigma_{\mathbf{v}}^2 = \mathbf{v}^T \mathbf{C} \mathbf{v} = \mathbf{v}^T \mathbf{U} \mathbf{D} \mathbf{U}^T \mathbf{v} = (\mathbf{U}^T \mathbf{v})^T \mathbf{D} (\mathbf{U}^T \mathbf{v}) = \mathbf{y}^T \mathbf{D} \mathbf{y}$$

where $\mathbf{y} = \mathbf{U}^T \mathbf{v} = [y_1, y_2, \dots, y_n]^T$ are the coordinates of \mathbf{v} in the Cartesian basis formed by the eigenvectors of \mathbf{C}

• With the eigenvalue decomposition of C, we have

$$\sigma_{\mathbf{v}}^2 = \mathbf{v}^T \mathbf{C} \mathbf{v} = \mathbf{v}^T \mathbf{U} \mathbf{D} \mathbf{U}^T \mathbf{v} = (\mathbf{U}^T \mathbf{v})^T \mathbf{D} (\mathbf{U}^T \mathbf{v}) = \mathbf{y}^T \mathbf{D} \mathbf{y}$$

where $\mathbf{y} = \mathbf{U}^T \mathbf{v} = [y_1, y_2, \dots, y_n]^T$ are the coordinates of \mathbf{v} in the Cartesian basis formed by the eigenvectors of \mathbf{C}

• $\|\mathbf{y}\| = 1$ since \mathbf{U}^T is an isometry (orthogonal matrix)

• We therefore want to maximize

$$\mathbf{v}^T \mathbf{C} \mathbf{v} = \lambda_1 (y_1)^2 + \lambda_2 (y_2)^2 \cdots + \lambda_n (y_n)^2$$

under the constraint $(y_1)^2 + (y_2)^2 + \dots + (y_n)^2 = 1$

 \bullet With the eigenvalue decomposition of $\boldsymbol{C},$ we have

$$\sigma_{\mathbf{v}}^2 = \mathbf{v}^T \mathbf{C} \mathbf{v} = \mathbf{v}^T \mathbf{U} \mathbf{D} \mathbf{U}^T \mathbf{v} = (\mathbf{U}^T \mathbf{v})^T \mathbf{D} (\mathbf{U}^T \mathbf{v}) = \mathbf{y}^T \mathbf{D} \mathbf{y}$$

where $\mathbf{y} = \mathbf{U}^T \mathbf{v} = [y_1, y_2, \dots, y_n]^T$ are the coordinates of \mathbf{v} in the Cartesian basis formed by the eigenvectors of \mathbf{C}

• $\|\mathbf{y}\| = 1$ since \mathbf{U}^T is an isometry (orthogonal matrix)

• We therefore want to maximize

$$\mathbf{v}^T \mathbf{C} \mathbf{v} = \lambda_1 (y_1)^2 + \lambda_2 (y_2)^2 \cdots + \lambda_n (y_n)^2$$

under the constraint $(y_1)^2 + (y_2)^2 + \cdots + (y_n)^2 = 1$

- Solution: $\mathbf{y} = [1, 0, \dots, 0]^T$ (since λ_1 is the largest eigenvalue)
- This corresponds to $\mathbf{v} = \mathbf{a}_1$ (the first eigenvector of **C**) and a preserved amount of variance given by $\sigma_{\mathbf{v}}^2 = \mathbf{a}_1^T \mathbf{C} \mathbf{a}_1 = \lambda_1$

イロト イポト イヨト イヨト

- In order to find the dimension of second highest variance, we have to look for an axis v orthogonal to a₁
 - **W U**^T is orthogonal, so the coordinates $\mathbf{y} = \mathbf{U}^T \mathbf{v}$ must be orthogonal to first axis $[1, 0, ..., 0]^T$, i.e. $\mathbf{y} = [0, y_2, ..., y_n]^T$

- In order to find the dimension of second highest variance, we have to look for an axis v orthogonal to a₁
 - **W U**^T is orthogonal, so the coordinates $\mathbf{y} = \mathbf{U}^T \mathbf{v}$ must be orthogonal to first axis $[1, 0, \dots, 0]^T$, i.e. $\mathbf{y} = [0, y_2, \dots, y_n]^T$
- In other words, we have to maximize

$$\mathbf{v}^T \mathbf{C} \mathbf{v} = \lambda_2 (y_2)^2 \cdots + \lambda_n (y_n)^2$$

under constraints $y_1 = 0$ and $(y_2)^2 + \cdots + (y_n)^2 = 1$

- In order to find the dimension of second highest variance, we have to look for an axis v orthogonal to a₁
 - **W U**^T is orthogonal, so the coordinates $\mathbf{y} = \mathbf{U}^T \mathbf{v}$ must be orthogonal to first axis $[1, 0, \dots, 0]^T$, i.e. $\mathbf{y} = [0, y_2, \dots, y_n]^T$
- In other words, we have to maximize

$$\mathbf{v}^T \mathbf{C} \mathbf{v} = \lambda_2 (y_2)^2 \cdots + \lambda_n (y_n)^2$$

under constraints $y_1 = 0$ and $(y_2)^2 + \cdots + (y_n)^2 = 1$

• Again, solution is $\mathbf{y} = [0, 1, 0, ..., 0]^T$, corresponding to the second eigenvector $\mathbf{v} = \mathbf{a}_2$ and preserved variance $\sigma_{\mathbf{v}}^2 = \lambda_2$

イロト イポト イヨト イヨト 二日

- In order to find the dimension of second highest variance, we have to look for an axis v orthogonal to a₁
 - **W U**^T is orthogonal, so the coordinates $\mathbf{y} = \mathbf{U}^T \mathbf{v}$ must be orthogonal to first axis $[1, 0, \dots, 0]^T$, i.e. $\mathbf{y} = [0, y_2, \dots, y_n]^T$
- In other words, we have to maximize

$$\mathbf{v}^T \mathbf{C} \mathbf{v} = \lambda_2 (y_2)^2 \cdots + \lambda_n (y_n)^2$$

under constraints $y_1 = 0$ and $(y_2)^2 + \cdots + (y_n)^2 = 1$

- Again, solution is $\mathbf{y} = [0, 1, 0, ..., 0]^T$, corresponding to the second eigenvector $\mathbf{v} = \mathbf{a}_2$ and preserved variance $\sigma_{\mathbf{v}}^2 = \lambda_2$
- Similarly for the third, fourth, ... axis

イロト イポト イヨト イヨト 二日

- The eigenvectors **a**_i of the covariance matrix **C** are called the **principal components** of the data set
- The amount of variance preserved (or "explained") by the *i*-th principal component is given by the eigenvalue λ_i
- Since λ₁ ≥ λ₂ ≥ · · · ≥ λ_n, the first principal component accounts for the largest amount of variance etc.
- Coordinates of a point x in PCA space are given by U^Tx (note: these are the projections on the principal components)
- For the purpose of "noise reduction", only the first n' < n principal components (with highest variance) are retained, and the other dimensions in PCA space are dropped
 - si.e. data points are projected into the subspace V spanned by the first n' column vectors of **U**

イロト 不得下 イヨト イヨト 二日

PCA example



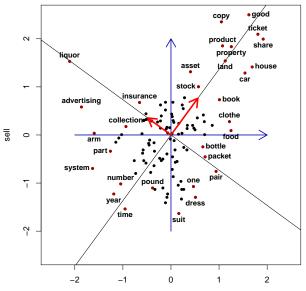
buy

э 30 July 2009 46 / 48

 $\exists \rightarrow$

A⊒ ► < 3

PCA example



Evert & Lenci (ESSLLI 2009)

buy

э 30 July 2009 46 / 48

∃ >

PCA in R

> pca <- prcomp(M) # for the buy/sell example data

```
> summary(pca)
Importance of components:
                         PC1
                               PC2
Standard deviation
                       0.947 0.599
Proportion of Variance 0.715 0.285
Cumulative Proportion 0.715 1.000
```

```
> print(pca)
Standard deviations:
[1] 0.9471326 0.5986067
```

Rotation:

	PC1	PC2
buy	-0.5907416	0.8068608
sell	-0.8068608	-0.5907416

A B + A B +

PCA in R

```
\# Coordinates in PCA space
> pca$x[c("house","book","arm","time"), ]
            PC1
                       PC2
house -2.1390957 0.5274687
book -1.1864783 0.3797070
      0.9141092 - 1.3080504
arm
time 1.8036445 0.1387165
# Transformation matrix U
> pca$rotation
           PC1
                      PC2
```

buy -0.5907416 0.8068608

sell -0.8068608 -0.5907416

Eigenvalues of the covariance matrix **C** > (pca\$sdev)^2 [1] 0.8970602 0.3583299

A B > A B >