
Singular value decomposition (SVD)
and dimensionality reduction

Distributional Semantic Models

Stefan Evert1 & Alessandro Lenci2

1University of Osnabrück, Germany
2University of Pisa, Italy

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 1 / 20

SVD Singular values

Remember PCA?

Principal components analysis is based on an eigenvalue
decomposition of the covariance matrix C into

C = U ·D ·UT

where U is orthogonal and D = Diag(λ1, . . . , λn).

The columns of U are eigenvectors

Cai = λiai

for the ordered eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn

Interesting link: uT Cv describes a general inner product
I σv is the norm of v with respect to this general inner product
I the eigenvalue decomposition corresponds to a transformation

into Cartesian coordinates where C has diagonal form
I eigenvalues λi are the “squashing factors” of the unit circle

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 2 / 20

SVD Singular values

Singular value decomposition (SVD)

The idea of eigenvalue decomposition can be generalised to
an arbitrary (non-symmetric, non-square) matrix A

+ need not have any eigenvalues

Singular value decomposition (SVD) factorises A into

A = U ·Σ · VT

where U and V are orthogonal coordinate transformations and
Σ is a rectangular-diagonal matrix of singular values
(with customary ordering σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0)

SVD is an important tool in linear algebra and statistics

+ in particular, PCA can be computed from SVD decomposition

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 3 / 20

SVD Singular values

SVD illustration

n

k A

=

k

k U

·

σ1 n
. . .

σn

k Σ

·

n

n VT

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 4 / 20

SVD SVD vs. PCA

PCA and the DSM matrix

Take a closer look at the covariance matrix

C = 1
k−1

k∑

i=1

xix
T
i

With xT
i =

[
xi1, . . . , xin

]
we find that

xix
T
i =

xi1
...

xin

 ·
[
xi1 · · · xin

]
=

(xi1)2 xi1xi2 · · · xi1xin

xi2xi1 (xi2)2 · · · xi2xin
...

...
. . .

...
xinxi1 xinxi2 · · · (xin)2

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 5 / 20

SVD SVD vs. PCA

PCA and the DSM matrix

k∑

i=1

xix
T
i =

∑
i (xi1)2

∑
i xi1xi2 · · · ∑i xi1xin∑

i xi2xi1
∑

i (xi2)2 · · · ∑i xi2xin
...

...
. . .

...∑
i xinxi1

∑
i xinxi2 · · · ∑

i (xin)2

If the xi are the row vectors of a DSM matrix M, then the
sums above are inner products between its column vectors

å C can efficiently be computed by matrix multiplication
(similar to cosine similarities, but for column vectors)

C = 1
k−1

k∑

i=1

xix
T
i = 1

k−1MT M

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 6 / 20

SVD SVD vs. PCA

PCA by singular value decomposition

Up to an irrelevant scaling factor 1
k−1 , we are thus looking for

an eigenvalue decomposition of MT M (which is symmetric!)

Like every matrix, M has a singular value decomposition

M = UΣVT

By inserting the SVD, we obtain

MT M =
(
UΣVT

)T
UΣVT

= (VT)T ΣT UT U︸ ︷︷ ︸
I

ΣVT

= V
(
ΣT Σ︸ ︷︷ ︸

Σ2

)
VT

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 7 / 20

SVD SVD vs. PCA

PCA by singular value decomposition

We have found the eigenvalue decomposition

MT M = VΣ2VT

with

Σ2 = ΣT Σ =

(σ1)2 n

n
. . .

(σn)2

The column vectors of V are latent dimensions

The corresponding squared singular values partition variance:
(σ1)2/

∑
i (σi)

2 = proportion along first latent dimension

+ intuitively, singular value shows importance of latent dimension

Interpretation of U is less intuitive (latent families of words?)

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 8 / 20

SVD SVD vs. PCA

Transforming the DSM matrix

We can directly transform the columns of the DSM matrix M:

MV = UΣ(VT V) = UΣ

For “noise reduction”, project into m-dimensional subspace
by dropping all but the first m� n columns of UΣ

å Sufficient to calculate the first m singular values σ1, . . . , σm

and left singular vectors a1, . . . , am (columns of U)

What is the difference between SVD and PCA?

+ we forgot to center and rescale the data!
+ most DSM matrices contain only non-negative values
+ first latent dimension points towards “positive” sector, and

was often found to be “uninteresting” in early SVD studies

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 9 / 20

SVD with R

SVD with R

As an example, we will use the unscaled matrix M again
> M1 <- M[c(1, 2, 4, 6),]
> M1

eat get hear kill see use

boat 0 59 4 0 39 23

cat 6 52 4 26 58 4

dog 33 115 42 17 83 10

pig 9 12 2 27 17 3

svd() function returns data structure with decomposition
> SVD <- svd(M1)

> SVD$d # singular values
[1] 186.57942 34.92487 28.18571 12.03908

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 10 / 20

SVD with R

SVD with R

Extract matrices U, Σ and V
> Sigma <- diag(SVD$d) # reduced to square matrix
> U <- SVD$u # coordinate transformations U and V
> V <- SVD$v # recall that V contains the latent dimensions

Now reconstruct M from decomposition
> round(U %*% Sigma %*% t(V), 2)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 59 4 0 39 23

[2,] 6 52 4 26 58 4

[3,] 33 115 42 17 83 10

[4,] 9 12 2 27 17 3

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 11 / 20

SVD with R

SVD with R

Coordinates of target nouns in latent DSM space
> U %*% Sigma

> M1 %*% V # this version preserves row names
[,1] [,2] [,3] [,4]

boat -69.97214 -12.570114 21.760062 4.4036025
cat -78.87562 21.092424 9.865719 -6.9580067
dog -151.85390 -9.004136 -14.673158 0.1279540
pig -25.19541 23.146798 -2.880942 8.7816522

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 12 / 20

SVD with R

SVD with R

Compute rank-m approximations of the original matrix M
> svd.approx <- function (m) {
+ U[,1:m, drop=FALSE] %*% Sigma[1:m,1:m, drop=FALSE] %*%
+ t(V)[1:m,, drop=FALSE]
+ }
> round(svd.approx(1), 1)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 11.5 52.3 14.1 10.7 40.9 7.1

[2,] 12.9 58.9 15.9 12.0 46.1 8.0

[3,] 24.9 113.4 30.6 23.2 88.7 15.4

[4,] 4.1 18.8 5.1 3.8 14.7 2.5

> round(svd.approx(2), 1)
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 11.1 56.4 17.2 0.2 37.0 9.4

[2,] 13.6 51.9 10.8 29.7 52.6 4.1

[3,] 24.6 116.4 32.8 15.6 85.9 17.0

[4,] 4.8 11.2 -0.6 23.2 21.9 -1.7

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 13 / 20

High-dimensional DSM Scaling up to the real world

Scaling up to the real world

So far, we have worked on small toy models
I DSM matrix restricted to 2,000 – 5,000 rows and columns
I small corpora (or dependency sets) can be processed within R

Now we need to scale up to real world data sets
I for most statistical models, more data are better data!
I cf. success of Google-based NLP techniques (even if simplistic)

Example 1: window-based DSM on BNC content words
I 83,926 lemma types with f ≥ 10
I term-term matrix with 83,926 · 83,926 = 7 billion entries
I standard representation requires 56 GB of RAM (8-byte floats)
I only 22.1 million non-zero entries (= 0.32%)

Example 2: Google Web 1T 5-grams (1 trillion words)
I more than 1 million word types with f ≥ 2500
I term-term matrix with 1 trillion entries requires 8 TB RAM
I only 400 million non-zero entries (= 0.04%)

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 14 / 20

High-dimensional DSM Scaling up to the real world

Handling large data sets: three approaches

1 Sparse matrix representation
I full DSM matrix does not fit into memory
I but much smaller number of non-zero entries can be handled

2 Feature selection
I reduce DSM matrix to subset of columns (usu. 2,000 – 10,000)
I select most frequent, salient, discriminative, . . . features

3 Dimensionality reduction
I also reduces number of columns, but maps vectors to subspace
I singular value decomposition (usu. ca. 300 dimensions)
I random indexing (2,000 or more dimensions)
I performed with external tools Ü R can handle reduced matrix

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 15 / 20

High-dimensional DSM Sparse matrix representation

Sparse matrix representation

Invented example of a sparsely populated DSM matrix

eat get hear kill see use

boat · 59 · · 39 23
cat · · · 26 58 ·
cup · 98 · · · ·
dog 33 · 42 · 83 ·

knife · · · · · 84
pig 9 · · 27 · ·

Store only non-zero entries in compact sparse matrix format
row col value row col value

1 2 59 4 1 33
1 5 39 4 3 42
1 6 23 4 5 83
2 4 26 5 6 84
2 5 58 6 1 9
3 2 98 6 4 27

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 16 / 20

High-dimensional DSM Sparse matrix representation

Working with sparse matrices

Compressed format: each row index (or column index) stored
only once, followed by non-zero entries in this row (or column)

I convention: column-major matrix (data stored by columns)

Specialised algorithms for sparse matrix algebra
I especially matrix multiplication, solving linear systems, etc.
I take care to avoid operations that create a dense matrix!

R implementation: Matrix package (from CRAN)
I can build sparse matrix from (row, column, value) table
I unfortunately, no implementation of sparse SVD so far

Other software packages: Matlab, Octave (recent versions)

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 17 / 20

High-dimensional DSM Feature selection

Feature selection

Many published models use feature selection to reduce
the size of a term-term DSM matrix

Selection criteria:
I most frequent context terms
I most informative contxt terms (tf.idf)
I most discriminative context terms (variance, entropy)
I term restricted by part of speech (e.g. only verbs)

Features often selected before co-occurrence counts
I only a moderately-sized DSM matrix has to be built
I allows simple in-memory algorithm for co-occurrence counts

Alternative: build DSM matrix only for relevant target terms
I i.e. reduce the number of rows instead of number of columns

Disadvantage: useful information may be discarded
I aggressive feature selection is common in the DSM literature

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 18 / 20

High-dimensional DSM SVD & random indexing

Dimensionality reduction: SVD

Feature selection is a simple form of dimensionality
reduction for managing high-dimensional spaces

I information from discarded features is completely lost

Better strategy: only discard irrelevant information by
orthogonal projection into subspace of latent dimensions

I subspace of first m principal components or singular vectors
I recall that this subspace preserves original distances as well as

possible Ü minimal amount of information discarded

Key ingredient: implementation of sparse-matrix SVD
I SVDPACK with various algorithms developed by Michael Berry
I most convenient implementation: SVDLIBC

http://tedlab.mit.edu/~dr/svdlibc/
I standard input format: compressed column-major sparse matrix
I only calculates first m singular values and vectors

SVD components U, Σ and V are stored in separate files

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 19 / 20

High-dimensional DSM SVD & random indexing

Dimensionality reduction: Random Indexing

SVD is computationally expensive for large DSM matrix
I even if the matrix is sparsely populated

Cheap method: orthogonal projection into random subspace
I it can be shown that this preserves original distances with high

probability (though not as well as SVD)
I intuition: if dimensionality m of subspace is large enough,

some vector should be close to a1, another close to a2, etc.

å random indexing (RI)
Further simplication: use random basis vectors for subspace

I saves additional cost of constructing an orthonormal basis
I if dimensionality n of original DSM space is large enough,

two random vectors are likely to be almost orthogonal
I intuition: inner product between random vectors = covariance

of two independent samples of random numbers (should be 0)

SVD identifies latent dimensions (“noise reduction”), but RI
only preserves distances Ü requires higher dimensionality m

Evert & Lenci (ESSLLI 2009) DSM: SVD 31 July 2009 20 / 20

