• Principal components analysis is based on an eigenvalue Singular value decomposition (SVD) decomposition of the covariance matrix C into and dimensionality reduction $\mathbf{C} = \mathbf{U} \cdot \mathbf{D} \cdot \mathbf{U}^T$ **Distributional Semantic Models** where **U** is orthogonal and **D** = Diag($\lambda_1, \ldots, \lambda_n$). Stefan Evert¹ & Alessandro Lenci² • The columns of **U** are **eigenvectors** $Ca_i = \lambda_i a_i$ ¹University of Osnabrück, Germany for the ordered **eigenvalues** $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ ²University of Pisa, Italy • Interesting link: $\mathbf{u}^T \mathbf{C} \mathbf{v}$ describes a general inner product • $\sigma_{\mathbf{v}}$ is the norm of **v** with respect to this general inner product the eigenvalue decomposition corresponds to a transformation into Cartesian coordinates where **C** has diagonal form

• eigenvalues λ_i are the "squashing factors" of the unit circle

31 July 2009

1 / 20

SVD Singular values

Remember PCA?

Evert & Lenci (ESSLLI 2009)

31 July 2009

2 / 20

SVD Singular values

Singular value decomposition (SVD)

- The idea of eigenvalue decomposition can be generalised to an arbitrary (non-symmetric, non-square) matrix **A**
 - need not have any eigenvalues
- Singular value decomposition (SVD) factorises A into

$$\mathbf{A} = \mathbf{U} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^7$$

where **U** and **V** are orthogonal coordinate transformations and $\boldsymbol{\Sigma}$ is a rectangular-diagonal matrix of **singular values** (with customary ordering $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$)

- SVD is an important tool in linear algebra and statistics
 - ${\it \ensuremath{\mathbb S}}$ in particular, PCA can be computed from SVD decomposition

SVD SVD vs. PCA

PCA and the DSM matrix

• Take a closer look at the covariance matrix

$$\mathbf{C} = \frac{1}{k-1} \sum_{i=1}^{k} \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}$$

• With $\mathbf{x}_i^T = [x_{i1}, \dots, x_{in}]$ we find that

$$\mathbf{x}_{i}\mathbf{x}_{i}^{T} = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{in} \end{bmatrix} \cdot \begin{bmatrix} x_{i1} & \cdots & x_{in} \end{bmatrix} = \begin{bmatrix} (x_{i1})^{2} & x_{i1}x_{i2} & \cdots & x_{i1}x_{in} \\ x_{i2}x_{i1} & (x_{i2})^{2} & \cdots & x_{i2}x_{in} \\ \vdots & \vdots & \ddots & \vdots \\ x_{in}x_{i1} & x_{in}x_{i2} & \cdots & (x_{in})^{2} \end{bmatrix}$$

PCA and the DSM matrix

$$\sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T} = \begin{bmatrix} \sum_{i} (x_{i1})^{2} & \sum_{i} x_{i1} x_{i2} & \cdots & \sum_{i} x_{i1} x_{in} \\ \sum_{i} x_{i2} x_{i1} & \sum_{i} (x_{i2})^{2} & \cdots & \sum_{i} x_{i2} x_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i} x_{in} x_{i1} & \sum_{i} x_{in} x_{i2} & \cdots & \sum_{i} (x_{in})^{2} \end{bmatrix}$$

- If the **x**_i are the row vectors of a DSM matrix **M**, then the sums above are inner products between its column vectors
- C can efficiently be computed by matrix multiplication (similar to cosine similarities, but for column vectors)

$$\mathbf{C} = rac{1}{k-1} \sum_{i=1}^{k} \mathbf{x}_i \mathbf{x}_i^T = rac{1}{k-1} \mathbf{M}^T \mathbf{M}$$

SVD SVD vs. PCA

PCA by singular value decomposition

- Up to an irrelevant scaling factor ¹/_{k-1}, we are thus looking for an eigenvalue decomposition of M^TM (which is symmetric!)
- Like every matrix, M has a singular value decomposition

$$\mathsf{M} = \mathsf{U} \mathbf{\Sigma} \mathsf{V}^{\mathcal{T}}$$

• By inserting the SVD, we obtain

$$\mathbf{M}^{T}\mathbf{M} = (\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T})^{T}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T}$$
$$= (\mathbf{V}^{T})^{T}\mathbf{\Sigma}^{T}\underbrace{\mathbf{U}^{T}\mathbf{U}}_{\mathbf{I}}\mathbf{\Sigma}\mathbf{V}^{T}$$
$$= \mathbf{V}(\underbrace{\mathbf{\Sigma}^{T}\mathbf{\Sigma}}_{\mathbf{\Sigma}^{2}})\mathbf{V}^{T}$$

SVD SVD vs. PCA

PCA by singular value decomposition

• We have found the eigenvalue decomposition

$$\mathbf{M}^{\mathsf{T}}\mathbf{M} = \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$$

with

Evert & Lenci (ESSLLI 2009)

$$\boldsymbol{\Sigma}^2 = \boldsymbol{\Sigma}^T \boldsymbol{\Sigma} = \begin{bmatrix} (\sigma_1)^2 & n \\ n & \ddots \\ & & (\sigma_n)^2 \end{bmatrix}$$

- The column vectors of V are latent dimensions
- The corresponding squared singular values partition variance: $(\sigma_1)^2 / \sum_i (\sigma_i)^2 =$ proportion along first latent dimension intuitively, singular value shows importance of latent dimension
- Interpretation of **U** is less intuitive (latent families of words?)

Evert & Lenci (ESSLLI 2009)

31 July 2009

31 July 2009

7 / 20

5/20

31 July 2009

6 / 20

Transforming the DSM matrix

• We can directly transform the columns of the DSM matrix M:

 $\mathsf{M}\mathsf{V} = \mathsf{U}\boldsymbol{\Sigma}(\mathsf{V}^{\mathsf{T}}\mathsf{V}) = \mathsf{U}\boldsymbol{\Sigma}$

- For "noise reduction", project into *m*-dimensional subspace by dropping all but the first $m \ll n$ columns of **U\Sigma**
- Sufficient to calculate the first *m* singular values σ₁,..., σ_m and left singular vectors a₁,..., a_m (columns of U)
- What is the difference between SVD and PCA?
 - we forgot to center and rescale the data!
 - most DSM matrices contain only non-negative values
 - first latent dimension points towards "positive" sector, and was often found to be "uninteresting" in early SVD studies

Evert & Lenci (ESSLLI 2009)

M: SVD

31 July 2009 9 / 20

SVD with R

SVD with R

- # Extract matrices **U**, $oldsymbol{\Sigma}$ and $oldsymbol{V}$
- > Sigma <- diag(SVD\$d) # reduced to square matrix</pre>
- > U <- SVDu # coordinate transformations U and V
- > V <- SVD\$v # recall that V contains the latent dimensions

Now reconstruct **M** from decomposition

> round(U %*% Sigma %*% t(V), 2)

	[,1]	L,2]	[,3]	L,4]	[,5]	[,6]	
[1,]	0	59	4	0	39	23	
[2,]	6	52	4	26	58	4	
[3,]	33	115	42	17	83	10	
[4,]	9	12	2	27	17	3	

SVD with R

#	As an	exa	mple	, we v	vill us	e the	uns	caled matrix M again
>	M1 <-	• M[c(1,	2,4	1, 6)	,]		
>	M1							
		eat	get	hear	kill	see	use	
	boat	0	59	4	0	39	23	
	cat	6	52	4	26	58	4	
	dog	33	115	42	17	83	10	
	pig	9	12	2	27	17	3	
#	svd()	fun	ctior	n retu	rns da	ta st	ructi	are with decomposition
>	SVD <	- s	vd(M	1)				

SVD with R

> SVD\$d # singular values
[1] 186.57942 34.92487 28.18571 12.03908

Evert & Lenci (ESSLLI 2009)

DSM: SVD

31 July 2009 10 / 20

SVD with R

SVD with R

Coordinates of target nouns in latent DSM space

> U %*% Sigma

> M1 %*% V # this version preserves row names

	[,1]	[,2]	[,3]	[,4]
boat	-69.97214	-12.570114	21.760062	4.4036025
cat	-78.87562	21.092424	9.865719	-6.9580067
dog	-151.85390	-9.004136	-14.673158	0.1279540
pig	-25.19541	23.146798	-2.880942	8.7816522

SVD with R

SVD with R

Compute rank- <i>m</i> approximations of the original matrix M
<pre>> svd.approx <- function (m) {</pre>
+ U[,1:m, drop=FALSE] %*% Sigma[1:m,1:m, drop=FALSE] %*%
+ t(V)[1:m,, drop=FALSE]
+ }
> round(svd.approx(1), 1)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 11.5 52.3 14.1 10.7 40.9 7.1
[2,] 12.9 58.9 15.9 12.0 46.1 8.0
[3,] 24.9 113.4 30.6 23.2 88.7 15.4
[4,] 4.1 18.8 5.1 3.8 14.7 2.5
<pre>> round(svd.approx(2), 1)</pre>
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 11.1 56.4 17.2 0.2 37.0 9.4
[2,] 13.6 51.9 10.8 29.7 52.6 4.1
[3,] 24.6 116.4 32.8 15.6 85.9 17.0
[4,] 4.8 11.2 -0.6 23.2 21.9 -1.7

Scaling up to the real world

- So far, we have worked on small toy models
 - DSM matrix restricted to 2,000 5,000 rows and columns
 - ▶ small corpora (or dependency sets) can be processed within R
- Now we need to scale up to real world data sets
 - ▶ for most statistical models, more data are better data!
 - cf. success of Google-based NLP techniques (even if simplistic)
- Example 1: window-based DSM on BNC content words
 - 83,926 lemma types with $f \ge 10$
 - term-term matrix with $83,926 \cdot 83,926 = 7$ billion entries
 - standard representation requires 56 GB of RAM (8-byte floats)
 - only 22.1 million non-zero entries (= 0.32%)
- Example 2: Google Web 1T 5-grams (1 trillion words)
 - more than 1 million word types with $f \ge 2500$
 - ▶ term-term matrix with 1 trillion entries requires 8 TB RAM
 - ▶ only 400 million non-zero entries (= 0.04%)

```
Evert & Lenci (ESSLLI 2009)
```

31 July 2009

13 / 20 Evert & Lenci (ESSLLI 2009)

High-dimensional DSM Scaling up to the real world

Handling large data sets: three approaches

- Sparse matrix representation
 - full DSM matrix does not fit into memory
 - but much smaller number of non-zero entries can be handled
- Ø Feature selection
 - reduce DSM matrix to subset of columns (usu. 2,000 10,000)
 - select most frequent, salient, discriminative, ... features
- Oimensionality reduction
 - also reduces number of columns, but maps vectors to subspace
 - singular value decomposition (usu. ca. 300 dimensions)
 - random indexing (2,000 or more dimensions)
 - ▶ performed with external tools → **R** can handle reduced matrix

High-dimensional DSM Sparse matrix representation

Sparse matrix representation

• Invented example of a sparsely populated DSM matrix

	eat	get	hear	kill	see	use
boat	.	59	•	•	39	23
cat	.	•	•	26	58	•
cup		98	•	•	•	•
dog	33	•	42	•	83	•
knife	.	•	•	•	•	84
pig	9	•	•	27	•	•

• Store only non-zero entries in compact sparse matrix format

row	col	value	row	col	value
1	2	59	4	1	33
1	5	39	4	3	42
1	6	23	4	5	83
2	4	26	5	6	84
2	5	58	6	1	9
3	2	98	6	4	27

31 July 2009

14 / 20

Working with sparse matrices

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
 - convention: column-major matrix (data stored by columns)
- Specialised algorithms for sparse matrix algebra
 - especially matrix multiplication, solving linear systems, etc.
 - take care to avoid operations that create a dense matrix!
- **R** implementation: Matrix package (from CRAN)
 - can build sparse matrix from (row, column, value) table
 - unfortunately, no implementation of sparse SVD so far
- Other software packages: Matlab, Octave (recent versions)

Feature selection

- Many published models use feature selection to reduce the size of a term-term DSM matrix
- Selection criteria:
 - most frequent context terms
 - most informative contxt terms (tf.idf)
 - most discriminative context terms (variance, entropy)
 - term restricted by part of speech (e.g. only verbs)
- Features often selected *before* co-occurrence counts
 - only a moderately-sized DSM matrix has to be built
 - allows simple in-memory algorithm for co-occurrence counts
- Alternative: build DSM matrix only for relevant target terms
 - i.e. reduce the number of rows instead of number of columns
- Disadvantage: useful information may be discarded
 - aggressive feature selection is common in the DSM literature

Lenci (ESSLLI 2009)	Evert & Lenci
---------------------	---------------

31 July 2009

17 / 20

19 / 20

Evert & Lenci (ESSLLI 2009)

31 July 2009

18 / 20

sional DSM SVD & random indexing High-di

Dimensionality reduction: SVD

- Feature selection is a simple form of **dimensionality** reduction for managing high-dimensional spaces
 - information from discarded features is completely lost
- Better strategy: only discard irrelevant information by orthogonal projection into subspace of latent dimensions
 - subspace of first m principal components or singular vectors
 - recall that this subspace preserves original distances as well as possible -> minimal amount of information discarded
- Key ingredient: implementation of sparse-matrix SVD
 - SVDPACK with various algorithms developed by Michael Berry
 - most convenient implementation: SVDLIBC http://tedlab.mit.edu/~dr/svdlibc/
 - standard input format: compressed column-major sparse matrix
 - only calculates first m singular values and vectors
- SVD components \mathbf{U} , $\boldsymbol{\Sigma}$ and \mathbf{V} are stored in separate files

al DSM SVD & random indexing

Dimensionality reduction: Random Indexing

- SVD is computationally expensive for large DSM matrix
 - even if the matrix is sparsely populated
- Cheap method: orthogonal projection into random subspace
 - it can be shown that this preserves original distances with high probability (though not as well as SVD)
 - \blacktriangleright intuition: if dimensionality *m* of subspace is large enough, some vector should be close to \mathbf{a}_1 , another close to \mathbf{a}_2 , etc.
 - random indexing (RI)
- Further simplication: use random basis vectors for subspace
 - saves additional cost of constructing an orthonormal basis
 - if dimensionality *n* of original DSM space is large enough, two random vectors are likely to be almost orthogonal
 - intuition: inner product between random vectors = covariance of two independent samples of random numbers (should be 0)
- SVD identifies latent dimensions ("noise reduction"), but RI only preserves distances \rightarrow requires higher dimensionality m