Singular value decomposition (SVD) and dimensionality reduction

Distributional Semantic Models

Stefan Evert¹ & Alessandro Lenci²

¹University of Osnabrück, Germany ²University of Pisa, Italy

Remember PCA?

• Principal components analysis is based on an eigenvalue decomposition of the covariance matrix C into

$$C = U \cdot D \cdot U^T$$

where **U** is orthogonal and **D** = $Diag(\lambda_1, \ldots, \lambda_n)$.

Remember PCA?

 Principal components analysis is based on an eigenvalue decomposition of the covariance matrix C into

$$C = U \cdot D \cdot U^T$$

where **U** is orthogonal and **D** = $Diag(\lambda_1, \ldots, \lambda_n)$.

The columns of U are eigenvectors

$$Ca_i = \lambda_i a_i$$

for the ordered **eigenvalues** $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

Remember PCA?

 Principal components analysis is based on an eigenvalue decomposition of the covariance matrix C into

$$C = U \cdot D \cdot U^T$$

where **U** is orthogonal and **D** = $Diag(\lambda_1, \ldots, \lambda_n)$.

The columns of U are eigenvectors

$$\mathbf{C}\mathbf{a}_i = \lambda_i \mathbf{a}_i$$

for the ordered **eigenvalues** $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

- Interesting link: **u**^T**Cv** describes a general **inner product**
 - \triangleright $\sigma_{\mathbf{v}}$ is the norm of \mathbf{v} with respect to this general inner product
 - ▶ the eigenvalue decomposition corresponds to a transformation into Cartesian coordinates where C has diagonal form
 - \triangleright eigenvalues λ_i are the "squashing factors" of the unit circle

Singular values

Singular value decomposition (SVD)

need not have any eigenvalues

 The idea of eigenvalue decomposition can be generalised to an arbitrary (non-symmetric, non-square) matrix A

Singular value decomposition (SVD)

- The idea of eigenvalue decomposition can be generalised to an arbitrary (non-symmetric, non-square) matrix A need not have any eigenvalues
- Singular value decomposition (SVD) factorises A into

$$A = U \cdot \Sigma \cdot V^T$$

where **U** and **V** are orthogonal coordinate transformations and Σ is a rectangular-diagonal matrix of singular values (with customary ordering $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$)

3 / 20

Singular value decomposition (SVD)

- The idea of eigenvalue decomposition can be generalised to an arbitrary (non-symmetric, non-square) matrix A need not have any eigenvalues
- Singular value decomposition (SVD) factorises A into

$$A = U \cdot \Sigma \cdot V^T$$

where **U** and **V** are orthogonal coordinate transformations and Σ is a rectangular-diagonal matrix of singular values (with customary ordering $\sigma_1 \geq \sigma_2 \geq \cdots > \sigma_n > 0$)

 SVD is an important tool in linear algebra and statistics in particular, PCA can be computed from SVD decomposition

SVD illustration

$$\begin{bmatrix} n \\ k & \mathbf{A} \end{bmatrix} = \begin{bmatrix} k & \mathbf{U} \\ k & \mathbf{U} \end{bmatrix} \cdot \begin{bmatrix} \sigma_1 & n \\ & \ddots \\ k & \mathbf{\Sigma} \end{bmatrix} \cdot \begin{bmatrix} n \\ n & \mathbf{V}^T \end{bmatrix}$$

• Take a closer look at the covariance matrix

$$\mathbf{C} = \frac{1}{k-1} \sum_{i=1}^{k} \mathbf{x}_i \mathbf{x}_i^T$$

Take a closer look at the covariance matrix

$$\mathbf{C} = \frac{1}{k-1} \sum_{i=1}^{k} \mathbf{x}_i \mathbf{x}_i^T$$

• With $\mathbf{x}_i^T = [x_{i1}, \dots, x_{in}]$ we find that

$$\mathbf{x}_{i}\mathbf{x}_{i}^{T} = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{in} \end{bmatrix} \cdot \begin{bmatrix} x_{i1} & \cdots & x_{in} \end{bmatrix} = \begin{bmatrix} (x_{i1})^{2} & x_{i1}x_{i2} & \cdots & x_{i1}x_{in} \\ x_{i2}x_{i1} & (x_{i2})^{2} & \cdots & x_{i2}x_{in} \\ \vdots & \vdots & \ddots & \vdots \\ x_{in}x_{i1} & x_{in}x_{i2} & \cdots & (x_{in})^{2} \end{bmatrix}$$

$$\sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T} = \begin{bmatrix} \sum_{i} (x_{i1})^{2} & \sum_{i} x_{i1} x_{i2} & \cdots & \sum_{i} x_{i1} x_{in} \\ \sum_{i} x_{i2} x_{i1} & \sum_{i} (x_{i2})^{2} & \cdots & \sum_{i} x_{i2} x_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i} x_{in} x_{i1} & \sum_{i} x_{in} x_{i2} & \cdots & \sum_{i} (x_{in})^{2} \end{bmatrix}$$

$$\sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T} = \begin{bmatrix} \sum_{i} (x_{i1})^{2} & \sum_{i} x_{i1} x_{i2} & \cdots & \sum_{i} x_{i1} x_{in} \\ \sum_{i} x_{i2} x_{i1} & \sum_{i} (x_{i2})^{2} & \cdots & \sum_{i} x_{i2} x_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i} x_{in} x_{i1} & \sum_{i} x_{in} x_{i2} & \cdots & \sum_{i} (x_{in})^{2} \end{bmatrix}$$

• If the \mathbf{x}_i are the row vectors of a DSM matrix \mathbf{M} , then the sums above are inner products between its column vectors

→□▶→□▶→□▶→□▶ □ 900

$$\sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T} = \begin{bmatrix} \sum_{i} (x_{i1})^{2} & \sum_{i} x_{i1} x_{i2} & \cdots & \sum_{i} x_{i1} x_{in} \\ \sum_{i} x_{i2} x_{i1} & \sum_{i} (x_{i2})^{2} & \cdots & \sum_{i} x_{i2} x_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i} x_{in} x_{i1} & \sum_{i} x_{in} x_{i2} & \cdots & \sum_{i} (x_{in})^{2} \end{bmatrix}$$

- If the x_i are the row vectors of a DSM matrix M, then the sums above are inner products between its column vectors
- ► C can efficiently be computed by matrix multiplication (similar to cosine similarities, but for column vectors)

$$\mathbf{C} = \frac{1}{k-1} \sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T} = \frac{1}{k-1} \mathbf{M}^{T} \mathbf{M}$$

◆ロト ◆団ト ◆草ト ◆草ト ■ りゅぐ

- Up to an irrelevant scaling factor $\frac{1}{k-1}$, we are thus looking for an eigenvalue decomposition of $\mathbf{M}^T\mathbf{M}$ (which is symmetric!)
- Like every matrix, M has a singular value decomposition

$$M = U\Sigma V^T$$

• By inserting the SVD, we obtain

$$\mathbf{M}^{T}\mathbf{M} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{T})^{T}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{T}$$
$$= (\mathbf{V}^{T})^{T}\boldsymbol{\Sigma}^{T}\underbrace{\mathbf{U}^{T}\mathbf{U}}_{\mathbf{I}}\boldsymbol{\Sigma}\mathbf{V}^{T}$$
$$= \mathbf{V}(\underbrace{\boldsymbol{\Sigma}^{T}\boldsymbol{\Sigma}}_{\mathbf{\Sigma}^{2}})\mathbf{V}^{T}$$

• We have found the eigenvalue decomposition

$$\mathbf{M}^T\mathbf{M} = \mathbf{V}\mathbf{\Sigma}^2\mathbf{V}^T$$

with

$$oldsymbol{\Sigma}^2 = oldsymbol{\Sigma}^T oldsymbol{\Sigma} = egin{bmatrix} (\sigma_1)^2 & n & & & & \\ n & \ddots & & & & \\ & & & (\sigma_n)^2 \end{bmatrix}$$

We have found the eigenvalue decomposition

$$\mathbf{M}^T\mathbf{M} = \mathbf{V}\mathbf{\Sigma}^2\mathbf{V}^T$$

with

$$\mathbf{\Sigma}^2 = \mathbf{\Sigma}^T \mathbf{\Sigma} = egin{bmatrix} (\sigma_1)^2 & n & & & \ n & \ddots & & \ & & & (\sigma_n)^2 \end{bmatrix}$$

• The column vectors of **V** are latent dimensions

We have found the eigenvalue decomposition

$$\mathbf{M}^T \mathbf{M} = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$

with

- The column vectors of **V** are latent dimensions
- The corresponding squared **singular values** partition variance: $(\sigma_1)^2/\sum_i (\sigma_i)^2 =$ proportion along first latent dimension intuitively, singular value shows importance of latent dimension

We have found the eigenvalue decomposition

$$\mathbf{M}^T \mathbf{M} = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$

with

$$\mathbf{\Sigma}^2 = \mathbf{\Sigma}^T \mathbf{\Sigma} = egin{bmatrix} (\sigma_1)^2 & n & & & \\ n & \ddots & & & \\ & & & (\sigma_n)^2 \end{bmatrix}$$

- The column vectors of **V** are latent dimensions
- The corresponding squared **singular values** partition variance: $(\sigma_1)^2/\sum_i (\sigma_i)^2 =$ proportion along first latent dimension intuitively, singular value shows importance of latent dimension
- Interpretation of U is less intuitive (latent families of words?)

• We can directly transform the columns of the DSM matrix **M**:

$$MV = U\Sigma(V^{\mathcal{T}}V) = U\Sigma$$

We can directly transform the columns of the DSM matrix M:

$$MV = U\Sigma(V^TV) = U\Sigma$$

- For "noise reduction", project into m-dimensional subspace by dropping all but the first $m \ll n$ columns of $\mathbf{U}\Sigma$
- Sufficient to calculate the first m singular values $\sigma_1, \ldots, \sigma_m$ and left singular vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m$ (columns of \mathbf{U})

We can directly transform the columns of the DSM matrix M:

$$MV = U\Sigma(V^TV) = U\Sigma$$

- For "noise reduction", project into m-dimensional subspace by dropping all but the first $m \ll n$ columns of $\mathbf{U}\Sigma$
- Sufficient to calculate the first m singular values $\sigma_1, \ldots, \sigma_m$ and left singular vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m$ (columns of \mathbf{U})
 - What is the difference between SVD and PCA?

We can directly transform the columns of the DSM matrix M:

$$MV = U\Sigma(V^TV) = U\Sigma$$

- For "noise reduction", project into m-dimensional subspace by dropping all but the first $m \ll n$ columns of $\mathbf{U}\Sigma$
- Sufficient to calculate the first m singular values $\sigma_1, \ldots, \sigma_m$ and left singular vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m$ (columns of \mathbf{U})
 - What is the difference between SVD and PCA?
 - we forgot to center and rescale the data!
 - most DSM matrices contain only non-negative values
 - first latent dimension points towards "positive" sector, and was often found to be "uninteresting" in early SVD studies

SVD with R

```
\# As an example, we will use the unscaled matrix M again
> M1 \leftarrow M[c(1, 2, 4, 6),]
> M1
       eat get hear kill see use
 boat
         0 59
                         39 23
 cat 6 52
               4 26
                         58 4
 dog 33 115 42 17
                         83 10
 pig
         9 12
                 2
                     27
                         17
# svd() function returns data structure with decomposition
> SVD <- svd(M1)
> SVD$d # singular values
[1] 186.57942 34.92487 28.18571 12.03908
```

> Sigma <- diag(SVD\$d) # reduced to square matrix
> U <- SVD\$u # coordinate transformations U and V</pre>

SVD with R

```
> V <- SVD$v # recall that V contains the latent dimensions
# Now reconstruct M from decomposition
> round(U %*% Sigma %*% t(V), 2)
    [,1] [,2] [,3] [,4] [,5] [,6]
[1,]
       0
         59
                         39
                             23
                   0
[2,] 6 52 4 26
                         58
[3,] 33 115
               42 17
                         83 10
[4,]
           12
                    27
                         17
                              3
```

Extract matrices \mathbf{U} , $\mathbf{\Sigma}$ and \mathbf{V}

SVD with R

```
\# Coordinates of target nouns in latent DSM space > U %*% Sigma
```

SVD with R

```
# Compute rank-m approximations of the original matrix \mathbf{M}
> svd.approx <- function (m) {</pre>
  U[,1:m, drop=FALSE] %*% Sigma[1:m,1:m, drop=FALSE] %*%
+ t(V)[1:m,, drop=FALSE]
> round(svd.approx(1), 1)
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 11.5 52.3 14.1 10.7 40.9 7.1
[2,] 12.9 58.9 15.9 12.0 46.1 8.0
[3,] 24.9 113.4 30.6 23.2 88.7 15.4
[4,] 4.1 18.8 5.1 3.8 14.7 2.5
> round(svd.approx(2), 1)
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 11.1 56.4 17.2 0.2 37.0 9.4
[2,] 13.6 51.9 10.8 29.7 52.6 4.1
[3,] 24.6 116.4 32.8 15.6 85.9 17.0
[4.] 4.8 11.2 -0.6 23.2 21.9 -1.7
```

- So far, we have worked on small toy models
 - ▶ DSM matrix restricted to 2,000 5,000 rows and columns
 - ▶ small corpora (or dependency sets) can be processed within R

- So far, we have worked on small toy models
 - ▶ DSM matrix restricted to 2,000 5,000 rows and columns
 - small corpora (or dependency sets) can be processed within R
- Now we need to scale up to real world data sets
 - for most statistical models, more data are better data!
 - cf. success of Google-based NLP techniques (even if simplistic)

- So far, we have worked on small toy models
 - ▶ DSM matrix restricted to 2,000 5,000 rows and columns
 - small corpora (or dependency sets) can be processed within R
- Now we need to scale up to real world data sets
 - for most statistical models, more data are better data!
 - cf. success of Google-based NLP techniques (even if simplistic)
- Example 1: window-based DSM on BNC content words
 - ▶ 83,926 lemma types with $f \ge 10$
 - term-term matrix with $83,926 \cdot 83,926 = 7$ billion entries
 - standard representation requires 56 GB of RAM (8-byte floats)

- So far, we have worked on small toy models
 - ▶ DSM matrix restricted to 2,000 5,000 rows and columns
 - small corpora (or dependency sets) can be processed within R
- Now we need to scale up to real world data sets
 - for most statistical models, more data are better data!
 - cf. success of Google-based NLP techniques (even if simplistic)
- Example 1: window-based DSM on BNC content words
 - ▶ 83,926 lemma types with $f \ge 10$
 - ▶ term-term matrix with $83,926 \cdot 83,926 = 7$ billion entries
 - standard representation requires 56 GB of RAM (8-byte floats)
 - ▶ only 22.1 million non-zero entries (= 0.32%)

- So far, we have worked on small toy models
 - ▶ DSM matrix restricted to 2,000 5,000 rows and columns
 - small corpora (or dependency sets) can be processed within R
- Now we need to scale up to real world data sets
 - for most statistical models, more data are better data!
 - cf. success of Google-based NLP techniques (even if simplistic)
- Example 1: window-based DSM on BNC content words
 - ▶ 83,926 lemma types with $f \ge 10$
 - term-term matrix with $83,926 \cdot 83,926 = 7$ billion entries
 - standard representation requires 56 GB of RAM (8-byte floats)
 - ▶ only 22.1 million non-zero entries (= 0.32%)
- Example 2: Google Web 1T 5-grams (1 trillion words)
 - ▶ more than 1 million word types with $f \ge 2500$
 - ▶ term-term matrix with 1 trillion entries requires 8 TB RAM
 - ▶ only 400 million non-zero entries (= 0.04%)

40 140 15 15 15 1 990

Handling large data sets: three approaches

- Sparse matrix representation
 - full DSM matrix does not fit into memory
 - but much smaller number of non-zero entries can be handled

Handling large data sets: three approaches

- Sparse matrix representation
 - full DSM matrix does not fit into memory
 - but much smaller number of non-zero entries can be handled
- Feature selection
 - ► reduce DSM matrix to subset of columns (usu. 2,000 10,000)
 - select most frequent, salient, discriminative, ... features

Handling large data sets: three approaches

- Sparse matrix representation
 - full DSM matrix does not fit into memory
 - but much smaller number of non-zero entries can be handled
- Peature selection
 - ► reduce DSM matrix to subset of columns (usu. 2,000 10,000)
 - select most frequent, salient, discriminative, . . . features
- Oimensionality reduction
 - also reduces number of columns, but maps vectors to subspace
 - singular value decomposition (usu. ca. 300 dimensions)
 - random indexing (2,000 or more dimensions)
 - performed with external tools → R can handle reduced matrix

Sparse matrix representation

Invented example of a sparsely populated DSM matrix

	eat	get	hear	kill	see	use
boat		59			39	23
cat				26	58	
cup		98				
dog	33		42		83	
knife	•					84
pig	9			27		

Sparse matrix representation

Invented example of a sparsely populated DSM matrix

	eat	get	hear	kill	see	use
boat		59			39	23
cat		•		26	58	•
cup		98				•
dog	33	•	42		83	•
knife		•				84
pig	9		•	27		

• Store only non-zero entries in compact sparse matrix format

row	col	value	row	col	value
1	2	59	4	1	33
1	5	39	4	3	42
1	6	23	4	5	83
2	4	26	5	6	84
2	5	58	6	1	9
3	2	98	6	4	27

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
 - convention: column-major matrix (data stored by columns)

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
 - convention: column-major matrix (data stored by columns)
- Specialised algorithms for sparse matrix algebra
 - especially matrix multiplication, solving linear systems, etc.
 - ▶ take care to avoid operations that create a dense matrix!

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
 - convention: column-major matrix (data stored by columns)
- Specialised algorithms for sparse matrix algebra
 - especially matrix multiplication, solving linear systems, etc.
 - take care to avoid operations that create a dense matrix!
- R implementation: Matrix package (from CRAN)
 - can build sparse matrix from (row, column, value) table
 - unfortunately, no implementation of sparse SVD so far

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
 - convention: column-major matrix (data stored by columns)
- Specialised algorithms for sparse matrix algebra
 - especially matrix multiplication, solving linear systems, etc.
 - take care to avoid operations that create a dense matrix!
- R implementation: Matrix package (from CRAN)
 - can build sparse matrix from (row, column, value) table
 - unfortunately, no implementation of sparse SVD so far
- Other software packages: Matlab, Octave (recent versions)

 Many published models use feature selection to reduce the size of a term-term DSM matrix

- Many published models use feature selection to reduce the size of a term-term DSM matrix
- Selection criteria:
 - most frequent context terms
 - most informative contxt terms (tf.idf)
 - most discriminative context terms (variance, entropy)
 - term restricted by part of speech (e.g. only verbs)

- Many published models use feature selection to reduce the size of a term-term DSM matrix
- Selection criteria:
 - most frequent context terms
 - most informative contxt terms (tf.idf)
 - most discriminative context terms (variance, entropy)
 - term restricted by part of speech (e.g. only verbs)
- Features often selected before co-occurrence counts
 - only a moderately-sized DSM matrix has to be built
 - ▶ allows simple in-memory algorithm for co-occurrence counts

- Many published models use feature selection to reduce the size of a term-term DSM matrix
- Selection criteria:
 - most frequent context terms
 - most informative contxt terms (tf.idf)
 - most discriminative context terms (variance, entropy)
 - term restricted by part of speech (e.g. only verbs)
- Features often selected before co-occurrence counts
 - only a moderately-sized DSM matrix has to be built
 - allows simple in-memory algorithm for co-occurrence counts
- Alternative: build DSM matrix only for relevant target terms
 - ▶ i.e. reduce the number of rows instead of number of columns

- Many published models use feature selection to reduce the size of a term-term DSM matrix
- Selection criteria:
 - most frequent context terms
 - most informative contxt terms (tf.idf)
 - most discriminative context terms (variance, entropy)
 - term restricted by part of speech (e.g. only verbs)
- Features often selected *before* co-occurrence counts
 - only a moderately-sized DSM matrix has to be built
 - ▶ allows simple in-memory algorithm for co-occurrence counts
- Alternative: build DSM matrix only for relevant target terms
 - ▶ i.e. reduce the number of rows instead of number of columns
- Disadvantage: useful information may be discarded
 - aggressive feature selection is common in the DSM literature

- Feature selection is a simple form of dimensionality reduction for managing high-dimensional spaces
 - information from discarded features is completely lost

- Feature selection is a simple form of dimensionality reduction for managing high-dimensional spaces
 - information from discarded features is completely lost
- Better strategy: only discard irrelevant information by orthogonal projection into subspace of latent dimensions
 - ▶ subspace of first *m* principal components or singular vectors
 - ▶ recall that this subspace preserves original distances as well as possible → minimal amount of information discarded

- Feature selection is a simple form of dimensionality reduction for managing high-dimensional spaces
 - information from discarded features is completely lost
- Better strategy: only discard irrelevant information by orthogonal projection into subspace of latent dimensions
 - ▶ subspace of first *m* principal components or singular vectors
 - ▶ recall that this subspace preserves original distances as well as possible → minimal amount of information discarded
- Key ingredient: implementation of sparse-matrix SVD
 - SVDPACK with various algorithms developed by Michael Berry
 - most convenient implementation: SVDLIBC http://tedlab.mit.edu/~dr/svdlibc/
 - standard input format: compressed column-major sparse matrix
 - only calculates first m singular values and vectors

| 4日 | 4日 | 4日 | 4日 | 日 | 900

- Feature selection is a simple form of dimensionality reduction for managing high-dimensional spaces
 - information from discarded features is completely lost
- Better strategy: only discard irrelevant information by orthogonal projection into subspace of latent dimensions
 - ▶ subspace of first *m* principal components or singular vectors
 - ▶ recall that this subspace preserves original distances as well as possible → minimal amount of information discarded
- Key ingredient: implementation of sparse-matrix SVD
 - SVDPACK with various algorithms developed by Michael Berry
 - most convenient implementation: SVDLIBC http://tedlab.mit.edu/~dr/svdlibc/
 - standard input format: compressed column-major sparse matrix
 - only calculates first m singular values and vectors
- ullet SVD components $oldsymbol{\mathsf{U}}$, $oldsymbol{\Sigma}$ and $oldsymbol{\mathsf{V}}$ are stored in separate files

40 > 40 > 42 > 42 > 2 > 900

- SVD is computationally expensive for large DSM matrix
 - even if the matrix is sparsely populated

- SVD is computationally expensive for large DSM matrix
 - even if the matrix is sparsely populated
- Cheap method: orthogonal projection into random subspace
 - it can be shown that this preserves original distances with high probability (though not as well as SVD)
 - ▶ intuition: if dimensionality m of subspace is large enough, some vector should be close to \mathbf{a}_1 , another close to \mathbf{a}_2 , etc.
 - **⇒** random indexing (RI)

- SVD is computationally expensive for large DSM matrix
 - even if the matrix is sparsely populated
- Cheap method: orthogonal projection into random subspace
 - it can be shown that this preserves original distances with high probability (though not as well as SVD)
 - ▶ intuition: if dimensionality m of subspace is large enough, some vector should be close to \mathbf{a}_1 , another close to \mathbf{a}_2 , etc.
 - **⇒** random indexing (RI)
- Further simplication: use random basis vectors for subspace
 - saves additional cost of constructing an orthonormal basis
 - ▶ if dimensionality *n* of original DSM space is large enough, two random vectors are likely to be almost orthogonal
 - intuition: inner product between random vectors = covariance of two independent samples of random numbers (should be 0)

→□ → →□ → → □ → □ → ○ へ ○

- SVD is computationally expensive for large DSM matrix
 - even if the matrix is sparsely populated
- Cheap method: orthogonal projection into random subspace
 - it can be shown that this preserves original distances with high probability (though not as well as SVD)
 - ▶ intuition: if dimensionality m of subspace is large enough, some vector should be close to \mathbf{a}_1 , another close to \mathbf{a}_2 , etc.
 - **⇒** random indexing (RI)
- Further simplication: use random basis vectors for subspace
 - saves additional cost of constructing an orthonormal basis
 - ▶ if dimensionality *n* of original DSM space is large enough, two random vectors are likely to be almost orthogonal
 - intuition: inner product between random vectors = covariance of two independent samples of random numbers (should be 0)
- SVD identifies latent dimensions ("noise reduction"), but RI only preserves distances → requires higher dimensionality m

