Singular value decomposition (SVD) and dimensionality reduction
 Distributional Semantic Models

Stefan Evert ${ }^{1}$ \& Alessandro Lenci ${ }^{2}$

${ }^{1}$ University of Osnabrück, Germany
${ }^{2}$ University of Pisa, Italy

Remember PCA?

- Principal components analysis is based on an eigenvalue decomposition of the covariance matrix \mathbf{C} into

$$
\mathbf{C}=\mathbf{U} \cdot \mathbf{D} \cdot \mathbf{U}^{T}
$$

where \mathbf{U} is orthogonal and $\mathbf{D}=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Remember PCA?

- Principal components analysis is based on an eigenvalue decomposition of the covariance matrix \mathbf{C} into

$$
\mathbf{C}=\mathbf{U} \cdot \mathbf{D} \cdot \mathbf{U}^{T}
$$

where \mathbf{U} is orthogonal and $\mathbf{D}=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

- The columns of \mathbf{U} are eigenvectors

$$
\mathbf{C} \mathbf{a}_{i}=\lambda_{i} \mathbf{a}_{i}
$$

for the ordered eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$

Remember PCA?

- Principal components analysis is based on an eigenvalue decomposition of the covariance matrix \mathbf{C} into

$$
\mathbf{C}=\mathbf{U} \cdot \mathbf{D} \cdot \mathbf{U}^{T}
$$

where \mathbf{U} is orthogonal and $\mathbf{D}=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

- The columns of \mathbf{U} are eigenvectors

$$
\mathbf{C} \mathbf{a}_{i}=\lambda_{i} \mathbf{a}_{i}
$$

for the ordered eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$

- Interesting link: $\mathbf{u}^{T} \mathbf{C v}$ describes a general inner product
- $\sigma_{\mathbf{v}}$ is the norm of \mathbf{v} with respect to this general inner product
- the eigenvalue decomposition corresponds to a transformation into Cartesian coordinates where \mathbf{C} has diagonal form
- eigenvalues λ_{i} are the "squashing factors" of the unit circle

Singular value decomposition (SVD)

- The idea of eigenvalue decomposition can be generalised to an arbitrary (non-symmetric, non-square) matrix \mathbf{A}
need not have any eigenvalues

Singular value decomposition (SVD)

- The idea of eigenvalue decomposition can be generalised to an arbitrary (non-symmetric, non-square) matrix \mathbf{A}
need not have any eigenvalues
- Singular value decomposition (SVD) factorises \mathbf{A} into

$$
\mathbf{A}=\mathbf{U} \cdot \boldsymbol{\Sigma} \cdot \mathbf{V}^{T}
$$

where \mathbf{U} and \mathbf{V} are orthogonal coordinate transformations and $\boldsymbol{\Sigma}$ is a rectangular-diagonal matrix of singular values (with customary ordering $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$)

Singular value decomposition (SVD)

- The idea of eigenvalue decomposition can be generalised to an arbitrary (non-symmetric, non-square) matrix \mathbf{A}
need not have any eigenvalues
- Singular value decomposition (SVD) factorises \mathbf{A} into

$$
\mathbf{A}=\mathbf{U} \cdot \boldsymbol{\Sigma} \cdot \mathbf{V}^{T}
$$

where \mathbf{U} and \mathbf{V} are orthogonal coordinate transformations and $\boldsymbol{\Sigma}$ is a rectangular-diagonal matrix of singular values
(with customary ordering $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$)

- SVD is an important tool in linear algebra and statistics
in particular, PCA can be computed from SVD decomposition

SVD illustration

PCA and the DSM matrix

- Take a closer look at the covariance matrix

$$
\mathbf{C}=\frac{1}{k-1} \sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T}
$$

PCA and the DSM matrix

- Take a closer look at the covariance matrix

$$
\mathbf{C}=\frac{1}{k-1} \sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T}
$$

- With $\mathbf{x}_{i}^{T}=\left[x_{i 1}, \ldots, x_{i n}\right]$ we find that

$$
\mathbf{x}_{i} \mathbf{x}_{i}^{T}=\left[\begin{array}{c}
x_{i 1} \\
\vdots \\
x_{i n}
\end{array}\right] \cdot\left[\begin{array}{lll}
x_{i 1} & \cdots & x_{i n}
\end{array}\right]=\left[\begin{array}{cccc}
\left(x_{i 1}\right)^{2} & x_{i 1} x_{i 2} & \cdots & x_{i 1} x_{i n} \\
x_{i 2} x_{i 1} & \left(x_{i 2}\right)^{2} & \cdots & x_{i 2} x_{i n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{i n} x_{i 1} & x_{i n} x_{i 2} & \cdots & \left(x_{i n}\right)^{2}
\end{array}\right]
$$

PCA and the DSM matrix

$$
\sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T}=\left[\begin{array}{cccc}
\sum_{i}\left(x_{i 1}\right)^{2} & \sum_{i} x_{i 1} x_{i 2} & \cdots & \sum_{i} x_{i 1} x_{i n} \\
\sum_{i} x_{i 2} x_{i 1} & \sum_{i}\left(x_{i 2}\right)^{2} & \cdots & \sum_{i} x_{i 2} x_{i n} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i} x_{i n} x_{i 1} & \sum_{i} x_{i n} x_{i 2} & \cdots & \sum_{i}\left(x_{i n}\right)^{2}
\end{array}\right]
$$

PCA and the DSM matrix

$$
\sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T}=\left[\begin{array}{cccc}
\sum_{i}\left(x_{i 1}\right)^{2} & \sum_{i} x_{i 1} x_{i 2} & \cdots & \sum_{i} x_{i 1} x_{i n} \\
\sum_{i} x_{i 2} x_{i 1} & \sum_{i}\left(x_{i 2}\right)^{2} & \cdots & \sum_{i} x_{i 2} x_{i n} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i} x_{i n} x_{i 1} & \sum_{i} x_{i n} x_{i 2} & \cdots & \sum_{i}\left(x_{i n}\right)^{2}
\end{array}\right]
$$

- If the \mathbf{x}_{i} are the row vectors of a DSM matrix \mathbf{M}, then the sums above are inner products between its column vectors

PCA and the DSM matrix

$$
\sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T}=\left[\begin{array}{cccc}
\sum_{i}\left(x_{i 1}\right)^{2} & \sum_{i} x_{i 1} x_{i 2} & \cdots & \sum_{i} x_{i 1} x_{i n} \\
\sum_{i} x_{i 2} x_{i 1} & \sum_{i}\left(x_{i 2}\right)^{2} & \cdots & \sum_{i} x_{i 2} x_{i n} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i} x_{i n} x_{i 1} & \sum_{i} x_{i n} x_{i 2} & \cdots & \sum_{i}\left(x_{i n}\right)^{2}
\end{array}\right]
$$

- If the \mathbf{x}_{i} are the row vectors of a DSM matrix \mathbf{M}, then the sums above are inner products between its column vectors
\Rightarrow C can efficiently be computed by matrix multiplication (similar to cosine similarities, but for column vectors)

$$
\mathbf{C}=\frac{1}{k-1} \sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{x}_{i}^{T}=\frac{1}{k-1} \mathbf{M}^{T} \mathbf{M}
$$

PCA by singular value decomposition

- Up to an irrelevant scaling factor $\frac{1}{k-1}$, we are thus looking for an eigenvalue decomposition of $\mathbf{M}^{T} \mathbf{M}$ (which is symmetric!)
- Like every matrix, \mathbf{M} has a singular value decomposition

$$
\mathbf{M}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}
$$

- By inserting the SVD, we obtain

$$
\begin{aligned}
\mathbf{M}^{T} \mathbf{M} & =\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)^{T} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \\
& =\left(\mathbf{V}^{T}\right)^{T} \boldsymbol{\Sigma}^{T} \underbrace{\mathbf{U}^{T} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}}_{\mathbf{I}} \\
& =\mathbf{V}(\underbrace{\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}}_{\boldsymbol{\Sigma}^{2}}) \mathbf{V}^{T}
\end{aligned}
$$

PCA by singular value decomposition

- We have found the eigenvalue decomposition

$$
\mathbf{M}^{T} \mathbf{M}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T}
$$

with

$$
\boldsymbol{\Sigma}^{2}=\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\left(\sigma_{1}\right)^{2} & n & \\
n & \ddots & \\
& & \left(\sigma_{n}\right)^{2}
\end{array}\right]
$$

PCA by singular value decomposition

- We have found the eigenvalue decomposition

$$
\mathbf{M}^{T} \mathbf{M}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T}
$$

with

$$
\boldsymbol{\Sigma}^{2}=\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\left(\sigma_{1}\right)^{2} & n & \\
n & \ddots & \\
& & \left(\sigma_{n}\right)^{2}
\end{array}\right]
$$

- The column vectors of \mathbf{V} are latent dimensions

PCA by singular value decomposition

- We have found the eigenvalue decomposition

$$
\mathbf{M}^{T} \mathbf{M}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T}
$$

with

$$
\boldsymbol{\Sigma}^{2}=\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\left(\sigma_{1}\right)^{2} & n & \\
n & \ddots & \\
& & \left(\sigma_{n}\right)^{2}
\end{array}\right]
$$

- The column vectors of \mathbf{V} are latent dimensions
- The corresponding squared singular values partition variance: $\left(\sigma_{1}\right)^{2} / \sum_{i}\left(\sigma_{i}\right)^{2}=$ proportion along first latent dimension intuitively, singular value shows importance of latent dimension

PCA by singular value decomposition

- We have found the eigenvalue decomposition

$$
\mathbf{M}^{T} \mathbf{M}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T}
$$

with

$$
\boldsymbol{\Sigma}^{2}=\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\left(\sigma_{1}\right)^{2} & n & \\
n & \ddots & \\
& & \left(\sigma_{n}\right)^{2}
\end{array}\right]
$$

- The column vectors of \mathbf{V} are latent dimensions
- The corresponding squared singular values partition variance: $\left(\sigma_{1}\right)^{2} / \sum_{i}\left(\sigma_{i}\right)^{2}=$ proportion along first latent dimension intuitively, singular value shows importance of latent dimension
- Interpretation of \mathbf{U} is less intuitive (latent families of words?)

Transforming the DSM matrix

- We can directly transform the columns of the DSM matrix \mathbf{M} :

$$
\mathbf{M} \mathbf{V}=\mathbf{U} \boldsymbol{\Sigma}\left(\mathbf{V}^{\top} \mathbf{V}\right)=\mathbf{U} \boldsymbol{\Sigma}
$$

Transforming the DSM matrix

- We can directly transform the columns of the DSM matrix \mathbf{M} :

$$
\mathbf{M} \mathbf{V}=\mathbf{U} \boldsymbol{\Sigma}\left(\mathbf{V}^{\top} \mathbf{V}\right)=\mathbf{U} \boldsymbol{\Sigma}
$$

- For "noise reduction", project into m-dimensional subspace by dropping all but the first $m \ll n$ columns of $\mathbf{U} \boldsymbol{\Sigma}$
\Leftrightarrow Sufficient to calculate the first m singular values $\sigma_{1}, \ldots, \sigma_{m}$ and left singular vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ (columns of \mathbf{U})

Transforming the DSM matrix

- We can directly transform the columns of the DSM matrix \mathbf{M} :

$$
\mathbf{M} \mathbf{V}=\mathbf{U} \boldsymbol{\Sigma}\left(\mathbf{V}^{\top} \mathbf{V}\right)=\mathbf{U} \boldsymbol{\Sigma}
$$

- For "noise reduction", project into m-dimensional subspace by dropping all but the first $m \ll n$ columns of $\mathbf{U} \boldsymbol{\Sigma}$
\Leftrightarrow Sufficient to calculate the first m singular values $\sigma_{1}, \ldots, \sigma_{m}$ and left singular vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ (columns of \mathbf{U})
- What is the difference between SVD and PCA?

Transforming the DSM matrix

- We can directly transform the columns of the DSM matrix \mathbf{M} :

$$
\mathbf{M} \mathbf{V}=\mathbf{U} \boldsymbol{\Sigma}\left(\mathbf{V}^{\top} \mathbf{V}\right)=\mathbf{U} \boldsymbol{\Sigma}
$$

- For "noise reduction", project into m-dimensional subspace by dropping all but the first $m \ll n$ columns of $\mathbf{U} \boldsymbol{\Sigma}$
\Leftrightarrow Sufficient to calculate the first m singular values $\sigma_{1}, \ldots, \sigma_{m}$ and left singular vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ (columns of \mathbf{U})
- What is the difference between SVD and PCA?
we forgot to center and rescale the data!
most DSM matrices contain only non-negative values
first latent dimension points towards "positive" sector, and was often found to be "uninteresting" in early SVD studies

SVD with R

\# As an example, we will use the unscaled matrix \mathbf{M} again
> M1 <- M[c(1, 2, 4, 6),]
> M1

	eat get hear kill	see	use			
boat	0	59	4	0	39	23
cat	6	52	4	26	58	4
dog	33	115	42	17	83	10
pig	9	12	2	27	17	3

\# svd() function returns data structure with decomposition
> SVD <- svd(M1)
> SVD\$d \# singular values
$\left[\begin{array}{lllll}{[1]} & 186.57942 & 34.92487 & 28.18571 & 12.03908\end{array}\right.$

SVD with R

\# Extract matrices $\mathbf{U}, \boldsymbol{\Sigma}$ and \mathbf{V}
> Sigma <- diag(SVD\$d) \# reduced to square matrix
> U <- SVD\$u \# coordinate transformations U and V
> V <- SVD\$v \# recall that V contains the latent dimensions
\# Now reconstruct \mathbf{M} from decomposition
> round (U \% \% \% Sigma \% * \% t(V), 2)
[,1] [,2] [,3] [,4] [,5] [,6]
$[1] \quad 0 \quad 59 \quad 4 \quad 0 \quad 39 \quad$,
$[2] \quad 6 \quad 52 \quad 4 \quad 26 \quad 58 \quad$,
$\left[\begin{array}{lllllll}{[3,]} & 33 & 115 & 42 & 17 & 83 & 10\end{array}\right.$
$\begin{array}{lllllll}{[4,]} & 9 & 12 & 2 & 27 & 17 & 3\end{array}$

SVD with R

\# Coordinates of target nouns in latent DSM space
> U \%*\% Sigma
> M1 \%*\% V \# this version preserves row names

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
boat	-69.97214	-12.570114	21.760062	4.4036025
cat	-78.87562	21.092424	9.865719	-6.9580067
dog	-151.85390	-9.004136	-14.673158	0.1279540
pig	-25.19541	23.146798	-2.880942	8.7816522

SVD with R

\# Compute rank- m approximations of the original matrix \mathbf{M}
> svd.approx <- function (m) \{

+ U[,1:m, drop=FALSE] \%*\% Sigma[1:m,1:m, drop=FALSE] \%*\%
$+\quad \mathrm{t}(\mathrm{V})[1: \mathrm{m}$, , drop=FALSE]
$+\}$
> round(svd.approx(1), 1)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] $11.5 \quad 52.314 .110 .740 .9 \quad 7.1$
[2,] $12.9 \quad 58.9 \quad 15.9 \quad 12.046 .1 \quad 8.0$
[3,] 24.9113 .430 .623 .288 .715 .4
$\begin{array}{lllllll}{[4,]} & 4.1 & 18.8 & 5.1 & 3.8 & 14.7 & 2.5\end{array}$
> round(svd.approx(2), 1)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] $11.1 \quad 56.417 .2 \quad 0.237 .0 \quad 9.4$
[2,] $13.6 \quad 51.910 .829 .752 .6 \quad 4.1$
[3,] 24.6116 .432 .815 .685 .917 .0
[4,] $4.8 \quad 11.2$-0.6 $23.2 \quad 21.9-1.7$

Scaling up to the real world

- So far, we have worked on small toy models
- DSM matrix restricted to 2,000-5,000 rows and columns
- small corpora (or dependency sets) can be processed within \mathbf{R}

Scaling up to the real world

- So far, we have worked on small toy models
- DSM matrix restricted to 2,000-5,000 rows and columns
- small corpora (or dependency sets) can be processed within \mathbf{R}
- Now we need to scale up to real world data sets
- for most statistical models, more data are better data!
- cf. success of Google-based NLP techniques (even if simplistic)

Scaling up to the real world

- So far, we have worked on small toy models
- DSM matrix restricted to 2,000-5,000 rows and columns
- small corpora (or dependency sets) can be processed within \mathbf{R}
- Now we need to scale up to real world data sets
- for most statistical models, more data are better data!
- cf. success of Google-based NLP techniques (even if simplistic)
- Example 1: window-based DSM on BNC content words
- 83,926 lemma types with $f \geq 10$
- term-term matrix with $83,926 \cdot 83,926=7$ billion entries
- standard representation requires 56 GB of RAM (8-byte floats)

Scaling up to the real world

- So far, we have worked on small toy models
- DSM matrix restricted to 2,000-5,000 rows and columns
- small corpora (or dependency sets) can be processed within \mathbf{R}
- Now we need to scale up to real world data sets
- for most statistical models, more data are better data!
- cf. success of Google-based NLP techniques (even if simplistic)
- Example 1: window-based DSM on BNC content words
- 83,926 lemma types with $f \geq 10$
- term-term matrix with $83,926 \cdot 83,926=7$ billion entries
- standard representation requires 56 GB of RAM (8-byte floats)
- only 22.1 million non-zero entries ($=0.32 \%$)

Scaling up to the real world

- So far, we have worked on small toy models
- DSM matrix restricted to 2,000-5,000 rows and columns
- small corpora (or dependency sets) can be processed within \mathbf{R}
- Now we need to scale up to real world data sets
- for most statistical models, more data are better data!
- cf. success of Google-based NLP techniques (even if simplistic)
- Example 1: window-based DSM on BNC content words
- 83,926 lemma types with $f \geq 10$
- term-term matrix with $83,926 \cdot 83,926=7$ billion entries
- standard representation requires 56 GB of RAM (8-byte floats)
- only 22.1 million non-zero entries ($=0.32 \%$)
- Example 2: Google Web 1T 5-grams (1 trillion words)
- more than 1 million word types with $f \geq 2500$
- term-term matrix with 1 trillion entries requires 8 TB RAM
- only 400 million non-zero entries ($=0.04 \%$)

Handling large data sets: three approaches

(1) Sparse matrix representation

- full DSM matrix does not fit into memory
- but much smaller number of non-zero entries can be handled

Handling large data sets: three approaches

(1) Sparse matrix representation

- full DSM matrix does not fit into memory
- but much smaller number of non-zero entries can be handled
(2) Feature selection
- reduce DSM matrix to subset of columns (usu. 2,000-10,000)
- select most frequent, salient, discriminative, ... features

Handling large data sets: three approaches

(1) Sparse matrix representation

- full DSM matrix does not fit into memory
- but much smaller number of non-zero entries can be handled
(2) Feature selection
- reduce DSM matrix to subset of columns (usu. 2,000-10,000)
- select most frequent, salient, discriminative, ... features
(3) Dimensionality reduction
- also reduces number of columns, but maps vectors to subspace
- singular value decomposition (usu. ca. 300 dimensions)
- random indexing (2,000 or more dimensions)
- performed with external tools $\rightarrow \mathbf{R}$ can handle reduced matrix

Sparse matrix representation

- Invented example of a sparsely populated DSM matrix

	eat	get	hear	kill	see	use
boat	\cdot	59	.	.	39	23
cat	\cdot	\cdot	.	26	58	\cdot
cup	\cdot	98	.	\cdot	\cdot	\cdot
dog	33	\cdot	42	\cdot	83	\cdot
knife	\cdot	\cdot	\cdot	\cdot	\cdot	84
pig	9	\cdot	.	27	\cdot	\cdot

Sparse matrix representation

- Invented example of a sparsely populated DSM matrix

	eat	get	hear	kill	see	use
boat	\cdot	59	.	.	39	23
cat	\cdot	\cdot	.	26	58	\cdot
cup	\cdot	98	.	\cdot	\cdot	\cdot
dog	33	\cdot	42	\cdot	83	.
knife	\cdot	\cdot	.	.	.	84
pig	9	\cdot	.	27	\cdot	\cdot

- Store only non-zero entries in compact sparse matrix format

row	col	value	row	col	value
1	2	59		4	1
1	5	39		4	3
1	6	23		4	5
2	4	26		5	6
2	5	58		6	1
3	2	98		6	4

Working with sparse matrices

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
- convention: column-major matrix (data stored by columns)

Working with sparse matrices

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
- convention: column-major matrix (data stored by columns)
- Specialised algorithms for sparse matrix algebra
- especially matrix multiplication, solving linear systems, etc.
- take care to avoid operations that create a dense matrix!

Working with sparse matrices

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
- convention: column-major matrix (data stored by columns)
- Specialised algorithms for sparse matrix algebra
- especially matrix multiplication, solving linear systems, etc.
- take care to avoid operations that create a dense matrix!
- \mathbf{R} implementation: Matrix package (from CRAN)
- can build sparse matrix from (row, column, value) table
- unfortunately, no implementation of sparse SVD so far

Working with sparse matrices

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
- convention: column-major matrix (data stored by columns)
- Specialised algorithms for sparse matrix algebra
- especially matrix multiplication, solving linear systems, etc.
- take care to avoid operations that create a dense matrix!
- \mathbf{R} implementation: Matrix package (from CRAN)
- can build sparse matrix from (row, column, value) table
- unfortunately, no implementation of sparse SVD so far
- Other software packages: Matlab, Octave (recent versions)

Feature selection

- Many published models use feature selection to reduce the size of a term-term DSM matrix

Feature selection

- Many published models use feature selection to reduce the size of a term-term DSM matrix
- Selection criteria:
- most frequent context terms
- most informative contxt terms (tf.idf)
- most discriminative context terms (variance, entropy)
- term restricted by part of speech (e.g. only verbs)

Feature selection

- Many published models use feature selection to reduce the size of a term-term DSM matrix
- Selection criteria:
- most frequent context terms
- most informative contxt terms (tf.idf)
- most discriminative context terms (variance, entropy)
- term restricted by part of speech (e.g. only verbs)
- Features often selected before co-occurrence counts
- only a moderately-sized DSM matrix has to be built
- allows simple in-memory algorithm for co-occurrence counts

Feature selection

- Many published models use feature selection to reduce the size of a term-term DSM matrix
- Selection criteria:
- most frequent context terms
- most informative contxt terms (tf.idf)
- most discriminative context terms (variance, entropy)
- term restricted by part of speech (e.g. only verbs)
- Features often selected before co-occurrence counts
- only a moderately-sized DSM matrix has to be built
- allows simple in-memory algorithm for co-occurrence counts
- Alternative: build DSM matrix only for relevant target terms
- i.e. reduce the number of rows instead of number of columns

Feature selection

- Many published models use feature selection to reduce the size of a term-term DSM matrix
- Selection criteria:
- most frequent context terms
- most informative contxt terms (tf.idf)
- most discriminative context terms (variance, entropy)
- term restricted by part of speech (e.g. only verbs)
- Features often selected before co-occurrence counts
- only a moderately-sized DSM matrix has to be built
- allows simple in-memory algorithm for co-occurrence counts
- Alternative: build DSM matrix only for relevant target terms
- i.e. reduce the number of rows instead of number of columns
- Disadvantage: useful information may be discarded
- aggressive feature selection is common in the DSM literature

Dimensionality reduction: SVD

- Feature selection is a simple form of dimensionality reduction for managing high-dimensional spaces
- information from discarded features is completely lost

Dimensionality reduction: SVD

- Feature selection is a simple form of dimensionality reduction for managing high-dimensional spaces
- information from discarded features is completely lost
- Better strategy: only discard irrelevant information by orthogonal projection into subspace of latent dimensions
- subspace of first m principal components or singular vectors
- recall that this subspace preserves original distances as well as possible \rightarrow minimal amount of information discarded

Dimensionality reduction: SVD

- Feature selection is a simple form of dimensionality reduction for managing high-dimensional spaces
- information from discarded features is completely lost
- Better strategy: only discard irrelevant information by orthogonal projection into subspace of latent dimensions
- subspace of first m principal components or singular vectors
- recall that this subspace preserves original distances as well as possible \rightarrow minimal amount of information discarded
- Key ingredient: implementation of sparse-matrix SVD
- SVDPACK with various algorithms developed by Michael Berry
- most convenient implementation: SVDLIBC http://tedlab.mit.edu/~dr/svdlibc/
- standard input format: compressed column-major sparse matrix
- only calculates first m singular values and vectors

Dimensionality reduction: SVD

- Feature selection is a simple form of dimensionality reduction for managing high-dimensional spaces
- information from discarded features is completely lost
- Better strategy: only discard irrelevant information by orthogonal projection into subspace of latent dimensions
- subspace of first m principal components or singular vectors
- recall that this subspace preserves original distances as well as possible \rightarrow minimal amount of information discarded
- Key ingredient: implementation of sparse-matrix SVD
- SVDPACK with various algorithms developed by Michael Berry
- most convenient implementation: SVDLIBC http://tedlab.mit.edu/~dr/svdlibc/
- standard input format: compressed column-major sparse matrix
- only calculates first m singular values and vectors
- SVD components $\mathbf{U}, \boldsymbol{\Sigma}$ and \mathbf{V} are stored in separate files

Dimensionality reduction: Random Indexing

- SVD is computationally expensive for large DSM matrix
- even if the matrix is sparsely populated

Dimensionality reduction: Random Indexing

- SVD is computationally expensive for large DSM matrix
- even if the matrix is sparsely populated
- Cheap method: orthogonal projection into random subspace
- it can be shown that this preserves original distances with high probability (though not as well as SVD)
- intuition: if dimensionality m of subspace is large enough, some vector should be close to \mathbf{a}_{1}, another close to \mathbf{a}_{2}, etc.
\Leftrightarrow random indexing (RI)

Dimensionality reduction: Random Indexing

- SVD is computationally expensive for large DSM matrix
- even if the matrix is sparsely populated
- Cheap method: orthogonal projection into random subspace
- it can be shown that this preserves original distances with high probability (though not as well as SVD)
- intuition: if dimensionality m of subspace is large enough, some vector should be close to \mathbf{a}_{1}, another close to \mathbf{a}_{2}, etc.
\Rightarrow random indexing (RI)
- Further simplication: use random basis vectors for subspace
- saves additional cost of constructing an orthonormal basis
- if dimensionality n of original DSM space is large enough, two random vectors are likely to be almost orthogonal
- intuition: inner product between random vectors = covariance of two independent samples of random numbers (should be 0)

Dimensionality reduction: Random Indexing

- SVD is computationally expensive for large DSM matrix
- even if the matrix is sparsely populated
- Cheap method: orthogonal projection into random subspace
- it can be shown that this preserves original distances with high probability (though not as well as SVD)
- intuition: if dimensionality m of subspace is large enough, some vector should be close to \mathbf{a}_{1}, another close to \mathbf{a}_{2}, etc.
random indexing (RI)
- Further simplication: use random basis vectors for subspace
- saves additional cost of constructing an orthonormal basis
- if dimensionality n of original DSM space is large enough, two random vectors are likely to be almost orthogonal
- intuition: inner product between random vectors = covariance of two independent samples of random numbers (should be 0)
- SVD identifies latent dimensions ("noise reduction"), but RI only preserves distances \rightarrow requires higher dimensionality m

