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Many tasks, many DSMs

Many (computational) linguistic and cognitive tasks can be
modeled with DSMs

synonym identification
semantic similarity judgment
categorization
analogy recognition
semantic relation classification
selectional preference modeling
argument alternations
nomina actionis recognition
. . .

Different tasks seem to require different distributional
spaces

word X word
word pair X link
verb slot X filler
. . .
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“One task, one model”
The standard approach in corpus-based semantics

For each semantic task. . .
taxonomic similarity, relation identification, selectional
preferences, etc.

. . . develop a different corpus-based pipeline
Excellent empirical results but:

not what humans do (human semantic memory is
general-purpose)
computationally inefficient, resources rarely reusable, prone
to overfitting



“One task, one model”
The standard approach in corpus-based semantics

For each semantic task. . .
taxonomic similarity, relation identification, selectional
preferences, etc.

. . . develop a different corpus-based pipeline
Excellent empirical results but:

not what humans do (human semantic memory is
general-purpose)
computationally inefficient, resources rarely reusable, prone
to overfitting



“One task, one model”
The standard approach in corpus-based semantics

For each semantic task. . .
taxonomic similarity, relation identification, selectional
preferences, etc.

. . . develop a different corpus-based pipeline
Excellent empirical results but:

not what humans do (human semantic memory is
general-purpose)
computationally inefficient, resources rarely reusable, prone
to overfitting



Towards a unified model

Turney (2008)
various tasks are reinterpreted as instances of a more
general task, i.e. analogy recognition

Baroni & Lenci (2009)
“One semantic memory, many semantic tasks”
each task may keep its specificity
unification is achieved by designing a sufficiently general
distributional structure, from which semantic spaces can be
generated on demand
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Distributional Memory
Baroni & Lenci (2009)

DM: a graph of weighted links between concepts,
built once and for all from the source corpus

same co-occurrence statistics parameters, same target
words, same weighting scheme

Different semantic tasks tackled by extracting different
matrices from underlying DM graph
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Trained DM

concept1 link concept2 weight
soldier use gun 41.0
gun use−1 soldier 41.0
policeman with gun 30.5
gun with−1 policeman 30.5
kill obj victim 915.4
victim obj−1 kill 915.4
kill subj tr soldier 1306.9
soldier subj tr−1 kill 1306.9



DM as a graph
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Matrix views of the DM graph

CxLC
subj in−1 subj tr−1 obj−1 with use

die kill kill gun gun
teacher 109.4 0.0 9.9 0.0 0.0
soldier 4547.5 1306.9 8948.3 105.9 41.0
policeman 68.6 38.2 538.1 30.5 7.4

CCxL
in at with use

teacher school 11894.4 7020.1 28.9 0.0
teacher handbook 2.5 0.0 3.2 10.1
soldier gun 2.8 10.3 105.9 41.0

CLxC
teacher victim soldier policeman

kill subj tr 0.0 22.4 1306.9 38.2
kill obj 9.9 915.4 8948.3 538.1
die subj in 109.4 1335.2 4547.5 68.6



Training DM

Training corpus
ukWaC, ukWaC, 2.25 billion tokens from the Web (Ferraresi
et al, 2008), pre-parsed with MINIPAR (Lin 1998)

Concepts
Top 20k most frequent nouns, top 5k most frequent verbs

Links
1 the top 30 most frequent direct V-N dependency paths (e.g.

kill+obj+victim)
2 the top 30 preposition-mediated N-N or V-N paths (e.g.

soldier+with+gun)
3 the top 50 transitive-verb-mediated N-N noun paths (e.g.

soldier+use+gun)
4 all the inverse relations of (1)-(3) (e.g. victim+obj−1+kill)

Weights
Local MI (Evert 2005)

DM size
69 million tuples
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Semantic tasks taken by DM (so far. . . )

Concept-by-Link+Concept (CxLC)
1 semantic similarity judgments
2 noun categorization
3 verb selectional restrictions

Concept+Concept-by-Link (CCxL)
4 recognizing SAT analogies
5 semantic relation classification

Concept+Link-by-Concept (CLxC)
6 argument alternations

The emphasis is on the model generality and adaptivity
the goal is to achieve state-of-the-art results (not
necessarily the best score), without task-specific parameter
tuning
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DM: a general framework for DSMs
Baroni & Lenci (2009)

DM achieves state-of-the-art results in various tasks,
without resorting to any “task-specific” optimization
Many semantic tasks can be tackled by assuming that
there is an underlying tuple-based “distributional memory”
Different ways to build co-occurrence matrices from the
distributional graph generate different semantic spaces

each space is a different “semantic view” on the underlying
distributional graph
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Compositionality

Compositionality is a core aspect of natural language, and
in particular natural language semantics

word type logical form meaning
Tom e Tom Tom, the cat
chases < e, < e, t >> λyλx.chase(x,y) {< x , y > | x chases y}
Jerry e Jerry Jerry, the mouse

Tom chases Jerry ⇒ chases(Tom, Jerry)
TRUE iff in this world Tom the cat chases Jerry the mouse

Compositionality allows us to create infinite meanings with
finite means



The principle of compositionality

The principle of compositionality
The meaning of a complex expression is a function of the
meanings of its parts and of their syntactic mode of combination

The ingredients of compositionality (Partee 1984)
a theory of lexical meanings - assigns meanings to the
smallest part (e.g. words)
a theory of syntactic structures - determines the relevant
part-whole structure of each complex expression
a theory of semantic composition - determines the
combinatorial semantic operations, i.e. the functions that
compose the meanings
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Words have multiple meanings

A key problem for compositionality
each element to be composed must have a unique and
constant meaning

Trivially solved (or rather ignored. . . ) in formal semantics
The cat chases the mouse ⇒ mouse1
The hacker clicks the mouse button ⇒ mouse2

A potential problem for DSMs too
meaning is represented by vectors (i.e. matrix rows)
there is one vector per each word type, and this vector
conflates its different senses

The cat chases the mouse ⇒ −−−−→mouse
The hacker clicks the mouse button ⇒ −−−−→mouse

−−−−→mouse will include information about the typical contexts of
mouse-as-animal and the typical contexts of
mouse-as-device (with a bias towards the most frequent
sense in a corpus)
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Distinguishing word senses with DSMs

Word senses are distinguished by contexts
The context of a word token can also receive a
representation in DSMs

Context vectors (Schütze 1998)
for each word token wi , take the words in its context Ci

C1 = {cat, chase}
C2 = {hacker, click, button}

for each Ci , build a context vector
−→
Ci , by summing the

vectors in a DSM of the words in Ci
−→
C1 =

−→
cat +

−−−→
chase−→

C2=
−−−−→
hacker +

−−→
click +

−−−−→
button

each context vector is the centroid of the vectors of its
words
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Distinguishing word senses with DSMs
Schütze 1998

Word senses are represented by clusters of similar
contexts

e.g. the cluster of the contexts of mouse-as-animal

1 take all the contexts of a word w in a training corpus
2 build the context vector

−→
Ci , for each of these contexts

3 cluster the context vectors
4 for each cluster, takes the centroid vector of the cluster, and

use this vector to represent one sense of w (sense vector,−→sj )

To assign a sense to a new instance of w in context Ck

1 build the context vector
−→
Ck

2 assign to w in context Ck the sense j whose sense vector
−→sj is closest to

−→
Ck
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Semantic operations

Let’s assume that we have “solved” the problem of
assigning a specific interpretation to each words in a
complex expression
The crucial step to account for compositionality is to
identify the semantic operations to combine the meaning of
atomic elements into a meaning for the complex
expression
The formal approach

the key operation for semantic composition is type-driven
functional application (possibly integrated with other types
of operations; cf. McNally’s course at ESSLLI’09,
Pustejovsky 1995, etc.)

λyλx.chase(x,y)(Jerry) = λx.chase(x,Jerry) ⇒
{< x , Jerry > | x chases Jerry the mouse}
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Composition as vector combination

Given two word vectors, the distributional “meaning” of the
phrase combining them is given by a combined vector
(e.g., the sum of their vectors)

Landauer & Dumais (1996), Kintsch (2001), Mitchell &
Lapata (2008)
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Types of vector composition
Mitchell & Lapata (2008)

Simple vector sum (Landauer & Dumais 1996)
−→p = −→a +

−→
b

−−−−−−→
chase cat =

−−−→
chase +

−→
cat

Contexts-sensitive vector sum (Kintsch 2001)
−→p = −→a +

−→
b +

∑−→n
n are the n−top nearest neighbors of the predicate
−−−−−−→
chase cat =

−−−→
chase +

−→
cat + (

−−→
hunt + −−→prey + . . . +

−−−−−→
capture)

Kintsch captures effects of context-sensitivity in predication
(e.g. disambiguation, co-composition, metaphorical
interpretation, etc.)

Vector pairwise moltiplication (Mitchell & Lapata 2008)
−→p = −→a ·

−→
b

−−−−−−→
chase cat =

−−−→
chase · −→cat
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Additive vs. multiplicative composition

Additive composition preserves all the dimensions of the
component vectors

hacker cheese button
mouse 25 10 17
click 30 0 20
click mouse 55 10 37

Multiplicative composition selects only the dimensions
shared by the component vectors

hacker cheese button
mouse 25 10 17
click 30 0 20
click mouse 1650 0 340

Mitchell & Lapata (2008) report better results with
multiplicative methods (tested on a lexical paraphrase task)
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Composition as vector combination

It is useful to extract the general gist of a passage (cf.
Landauer & Dumais 1996)
However, order/hierarchical structure is not taken into
account

The cat chases the mouse and The mouse chases the cat
produce identical vectors

The interpretation of a composed vector is not clear
−−−−−−→
chase cat is something in between

−−−−→
chase and

−→
cat , but the

meaning of chase cat is not something in between the
meaning of chase and the meaning of cat

With vector multplication we can select specific senses of a
word in context, but often multiple senses are
simultaneously active (cf. co-predication)

John leaves in a large city in the north of the US
This city voted for Obama
Large cities in the north of the US voted for Obama
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Making vector combination more sophisticated

Jones and Mewhort (2007), following up on work by
Smolensky (1990) and Plate (2003), propose sophisticated
vector composition methods (“tensor algebra”) where the
resulting vector keeps track of the order of words in the
original phrase
Very interesting developments, but for the moment:

it is not clear that they could ever possibly capture the
richness of hierarchical relations



A different approach to compositionality with DSMs

When sentences are built, word vectors are checked and
updated to enforce various composition constraints, but
they are not fused
Given general semantic composition rules that combine
words having very few types (e, t , etc.), DSMs can be used
to check the “commonsense” plausibility of the
combination

the Montagovian composition component might tell us that
both Tom eats the mouse and Tom eats sympathy are false
DSMs will tell us that the latter is also highly unlikely

cf. use of DSMs to model selectional preferences



A different approach to compositionality with DSMs

When sentences are built, word vectors are checked and
updated to enforce various composition constraints, but
they are not fused
Given general semantic composition rules that combine
words having very few types (e, t , etc.), DSMs can be used
to check the “commonsense” plausibility of the
combination

the Montagovian composition component might tell us that
both Tom eats the mouse and Tom eats sympathy are false
DSMs will tell us that the latter is also highly unlikely

cf. use of DSMs to model selectional preferences



Outline

1 Looking for a unified model

2 Compositionality
Distinguishing word meanings
Composing meanings
Co-composition
Some remarks on compositionality



Co-composition
Pustejovsky (1995), and many others

When words are composed, they tend to affect each
other’s meanings

The horse runs vs. The water runs
“The horse horse-like runs”
cf. an instance of context-sensitive interpretation of lexical
items

Erk & Padó (2008)
run vector in the context of horse is a (multiplicative or
additive) combination of the run vector and a prototype
vector that represents the typical verbs horse is a subject of

run-in-the-context-of-horse = −→run · (
−−−→
gallop +

−→
trot + . . . )

horse vector in the context of run is a (multiplicative or
additive) combination of the horse vector and a prototype
vector that represents the typical subjects of run

horse-in-the-context-of-run =
−−−→
horse · (−→car +

−→
lion + . . . )

similar to Kintsch (2001), but now the predicate and the
argument vectors are not fused together
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vector that represents the typical verbs horse is a subject of

run-in-the-context-of-horse = −→run · (
−−−→
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trot + . . . )
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Predicting verb-in-context similarity judgments

Mitchell & Lapata’s (2007, ML) data-set
49 subjects produced similarity ratings on 1-7 scale for
intransitive subject-verb sentence pairs, one with
context-affected verb, one with “landmark” reference verb:

subject verb landmark judgment
shoulder slump slouch 7
shoulder slump decline 2
value slump slouch 3
value slump decline 7

Average inter-subject Spearman correlation (ρ): 40%!



Erk & Padó (2008)

Vectors computed on 100M word BNC corpus,
MINIPAR-based dependency-links, MI-weighting
Measure cosine similarity of vector that, according to
various models, represent verb-in-context, to landmark
verb vector (e.g., “slump-in-the-context-of-value” vector to
decline vector)
Various configurations for vector combination

verb: use verb out-of-context vector
prototype: use prototype vector built from vectors of verbs
that typically occur with noun as subject
combined: multiply verb vector and noun-as-subject
prototype verb vector
power-combined: same, but values of dimensions of
noun-as-subject prototype verb vector are raised to a power
of 20
ML: Mitchell and Lapata’s method: multiply noun and verb
vector



Results
Correlation with human judgments

power-combined 27%
ML 24%
prototype 16%
combined 13%
verb 8%

Similar results for a subset of the SEMEVAL07 lexical
substitution task, where power-combined and prototype
outperform ML
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Two views of vector composition in DSMs

Syntagmatic composition
given the complex expression ab, we compose −→a and

−→
b to

form a vector
−→
ab

the composed vector is the interpretation of ab

Paradigmatic composition
given the complex expression ab, we compose −→a with the
vectors −→c1 . . .

−→cn of expressions that are paradigmatically
similar to b

the composed vector is the interpretation of
a-in-the-context-of-b

promising to capture various effects of context-sentitivity (cf.
coercion, subsectivity effects in adjectives, etc.)



Two views of vector composition in DSMs

In formal semantics we have a clear idea of the
interpretation of complex expressions, i.e. sentences

sentences denote truth-values (< t >) or propositions
(< w , t >)
the denotation of the component expressions is their
contributions to the computation of the sentence denotation
(cf. Frege’s context principle)

In DSMs we have a clear idea of the interpretation of
words

words are interpreted on distributional vectors
We don’t have clear intuitions of what a composed vector
stands for semantically

−→w is the distributional contextual representation of w , but
what does the composed vector of a sentence represent?
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Compositionality and contextual effects

Compositionality could be a very simple process, but it is
complicated by the behaviour of lexical items in context
(producing type mismatches)

non-intersectivity
skillful politician vs. fast typist vs. stone lion

coercion
enjoy a book vs. begin a book

Kamp & Partee (1995: 163)
“It would seem that part of knowing the meaning of a word
should have to involve knowing how the basic meaning(s) could
be stretched, shrunk, or otherwise revised in various ways
when necessary; since the possible revisions are probably not
finitely specifiable, such a conception of meaning would take us
well beyond the normal conception of the lexicon as a finite list
of finite specifications of idiosyncratic information about a
particular lexsical items”
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Compositional semantics and DSMs

A possible division of labour between formal semantics
and DSMs

formal semantics contributes with a solid model of meaning
composition

specifies how semantic types should compose
DSMs integrates it with a model for context-sentive
modulation of semantic types

solves semantic type-mismatches
cf. the notion of concept recalibration in Kamp & Partee
(1985), the notion of contextual concept in Bosch (1995), etc.

This would be like taking the best of two worlds
DSMs could simplify the mechanisms (e.g. type-shiftings,
coercion, etc.) that are usually required to solve
context-induced type-mismatches

a challenge for DSMs: address really hard cases of
context-effects for formal semantics
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That’s all, folks!
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