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General definition of DSMs

A distributional semantic model (DSM) is a scaled and/or
transformed co-occurrence matrix M, such that each row x
represents the distribution of a target term across contexts.

get see use hear eat kill
knife | 0.027 | -0.024 | 0.206 | -0.022 | -0.044 | -0.042
cat | 0.031 | 0.143 | -0.243 | -0.015 | -0.009 | 0.131
dog | -0.026 | 0.021 | -0.212 | 0.064 0.013 0.014
boat | -0.022 | 0.009 ([ -0.044 | -0.040 | -0.074 | -0.042
cup | -0.014 | -0.173 | -0.249 | -0.099 | -0.119 | -0.042
pig | -0.069 | 0.094 | -0.158 | 0.000 | 0.094 | 0.265
banana | 0.047 | -0.139 | -0.104 | -0.022 | 0.267 | -0.042

Term = word, lemma, phrase, morpheme, word pair, ...
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General definition of DSMs

Mathematical notation:
» k x n co-occurrence matrix M € R¥*" (example: 7 x 6)

» k rows = target terms
» n columns = features or dimensions

mi1 M2 Mmip

mz1 M2 mzp
M = .

Mmy1 Mg Myn

» distribution vector m; = i-th row of M, e.g. m3 = mg,; € R”

» components m; = (m,-l, mio, ..., min) = features of i-th term:

m3 = (—0.026,0.021, —0.212,0.064,0.013,0.014)

= (m31, m3p, m33, M34, M35, M3g)
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DSM parameters A taxonomy of DSM parameters

Term-context matrix

Term-context matrix records frequency of term in each individual
context (e.g. sentence, document, Web page, encyclopaedia article)
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fi - cat[T0[10] 7 [ = ]-1-1-
fr - dog | - 10 4 11 [-[-1-
F— : animal | 2 |15 [10] 2 [-[-|-
time | 1 - - - 12]11]-
: reason | — 1 - - 111411
R R cause | — | = | - 2 1216
B N effect | - | - | - 1 [-111-
> TC <- DSM_TermContext
> head(TC, Inf) # extract full co-oc matrix from DSM object
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DSM parameters A taxonomy of DSM parameters

Overview of DSM parameters

[pre—processed corpus with linguistic annotation]

\tfrm_term matrix

[define target terms] [define target & feature terms]

!

[type & size of co-occurrence

term-context matrix

[context tokens or types]

\

geometric analysis

probabilistic analysis

feature scaling embedding learned by

neural network

{similarity/distance measure + normalization

[dimensionality reduction ]
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DSM parameters A taxonomy of DSM parameters

Term-term matrix

Term-term matrix records co-occurrence frequencies with feature
terms for each target term

~
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(78 > NGNS

mp .- cat [ 83[17[ 7 [37]-T 1T -

my .- dog | 561[13] 30|60 [ 1] 2 | 4

M — animal | 42 [10(109[134]13( 5 5
B time | 191929 [117]81] 34 [109

: reason 1 (-1 2 |14 [68(140] 47

ceeomy e cause | — | 1] =] 4 |55 34|55

- - effect - -11 6 |60]| 35 [ 17

> TT <- DSM_TermTerm
> head(TT, Inf)

DSM Tutorial — Part 2 wordspace.collocations.de

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

6/84

8/84



DSM parameters A taxonomy of DSM parameters DSM parameters A taxonomy of DSM parameters

Term-term matrix Overview of DSM parameters

Some footnotes: [pre—processed corpus with linguistic annotation]

» Often target terms # feature terms

» e.g. nouns described by co-occurrences with verbs as features
» identical sets of target & feature terms = symmetric matrix

term-context matrix term-term matrix

define target terms

define target & feature terms

» Different types of co-occurrence (Evert 2008)

» surface context (word or character window) [context tokens or types] [type & size of co—occurrence]
» textual context (non-overlapping segments) \
» syntactic context (dependency relation)

» Can be seen as smoothing of term-context matrix geometric analysis
> average over similar contexts (with same context terms)
» data sparseness reduced, except for small windows

» we will take a closer look at the relation between term-context —— - —
and term-term models in part 5 of this tutorial {snmilarity/distance measure + normalization]

probabilistic analysis

feature scaling

embedding learned by
neural network

[dimensionality reduction ]
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A E R QR s
Definition of target and feature terms Effects of linguistic annotation

> : L
Choice of linguistic unit Nearest neighbours of walk (BNC)

> words
> bigrams, trigrams, ... word forms lemmatised + POS
» multiword units, named entities, phrases, ...
» stroll > hurry
» morphemes .
» word pairs (== analogy tasks) > walking > stroll
» Linguistic annotation > walked > stride
» word forms (minimally requires tokenisation) > go > trudge
» often lemmatisation or stemming to reduce data sparseness: » path » amble
g0, goes, went, gone, going g | > drive —
» POS disambiguation (light/N vs. light/A vs. light/V) - i >
» word sense disambiguation (bankiiver Vs. bankfinance) ride walk (noun)
» abstraction: POS tags (or bigrams) as feature terms > wander > walking
» Trade-off between deeper linguistic analysis and > sprinted > retrace
» need for language-specific resources > sauntered > scuttle
» possible errors introduced at each stage of the analysis http://clic.cimec.unitn. it/infonap-query/
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DSM Tutorial — Part 2
L_Dpsm parameters

A taxonomy of DSM parameters
L Effects of linguistic annotation

1. All models built with Infomap NLP: 2-word window, 20k targets, 2k
features, 300 latent dims
2. Lemmatised model uses BNC lemma annotation (with POS
category)
DSM Tutorial — Part 2 et

L-pswm parameters

N

A taxonomy of DSM parameters
LEffects of linguistic annotation

Colours seem to indicate inflected forms belonging to the same
lemma.

Based on La Repubblica SSLMiT corpus

Lemmatised model includes two-letter POS codes

DSM parameters A taxonomy of DSM parameters

Effects of linguistic annotation

Nearest neighbours of arrivare (Repubblica)

word forms lemmatised + POS

» giungere > giungere

» raggiungere > aspettare

> arrivi > attendere

» raggiungimento » arrivo (noun)

» raggiunto P ricevere

» trovare > accontentare

» raggiunge > approdare

» arrivasse P pervenire

» arrivera > venire

» concludere » piombare

http://clic.cimec.unitn.it/infomap-query/
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DEIVIEIE S A taxonomy of DSM parameters

Selection of target and feature terms

» Full-vocabulary models are often unmanageable
> 762,424 distinct word forms in BNC, 605,910 lemmata
> large Web corpora have > 10 million distinct word forms
> low-frequency targets (and features) are not reliable (“noisy”)
» Frequency-based selection
> minimum corpus frequency: f > Fuyin
> or accept n, most frequent terms
» sometimes also upper threshold: Fin < f < Frax
> Relevance-based selection
» criterion from IR: document frequency df
> high df = uninformative / low df = too sparse to be useful
> alternatives: entropy H or chi-squared statistic X
» Other criteria

» PQOS-based filter: no function words, only verbs, nouns, ...
» general dictionary, words required for particular task, ...
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DSM parameters A taxonomy of DSM parameters

Overview of DSM parameters

[pre—processed corpus with linguistic annotation]

\erm—term matrix

[define target & feature terms}

term-context matrix

[define target terms}

type & size of co-occurrence

(context tokens or types]

geometric analysis probabilistic analysis

feature scaling

embedding learned by
neural network

[similarity/distance measure + normalization]

(dimensionality reduction }
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DSM parameters A taxonomy of DSM parameters

Effect of span size

Nearest neighbours of dog (BNC)

2-word span 30-word span
> cat » kennel
» horse > puppy
> fox > pet
> pet » bitch
> rabbit > terrier
> pig » rottweiler
» animal » canine
» mongrel > cat
» sheep » to bark
P pigeon » Alsatian

http://clic.cimec.unitn.it/infomap-query/
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DSM parameters A taxonomy of DSM parameters

Surface context

Context term occurs within a span of k words around target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It's
midsummer; the living room has its instruments and other objects
in each of its corners.  [L3/R3 span, k = 6]

Parameters:
> span size (in words or characters)
» symmetric vs. one-sided span
» uniform or “triangular” (distance-based) weighting (don't!)
>

spans clamped to sentences or other textual units?
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DSM parameters A taxonomy of DSM parameters

Textual context

Context term is in the same linguistic unit as target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It's
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
» type of linguistic unit
> sentence
> paragraph
> turn in a conversation
> Web page
> tweet

DSM Tutorial — Part 2
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DSM parameters A taxonomy of DSM parameters DSM parameters A taxonomy of DSM parameters

Syntactic context “Knowledge pattern” context

Context term is linked to target by a syntactic dependency
(e.g. subject, modifier, ...). Context term is linked to target by a lexico-syntactic pattern

Py (text mining, cf. Hearst 1992, Pantel & Pennacchiotti 2008, etc.).
The silhouette of the sun beyond a wide-open bay on the lake; the

sun still glitters although evening has arrived in Kuhmo. It's In Provence, Van Gogh painted with bright colors such as red and
midsummer; the living room has its instruments and other objects yellow. These colors produce incredible effects on anybody looking
in each of its corners. at his paintings.
Parameters: Parameters:

> types of syntactic dependency (Padé & Lapata 2007) > inventory of lexical patterns

> lots of research to identify semantically interesting patterns
(cf. Almuhareb & Poesio 2004, Veale & Hao 2008, etc.)

» fixed vs. flexible patterns

» direct vs. indirect dependency paths

» homogeneous data (e.g. only verb-object) vs.

heterogeneous data (e.g. all children and parents of the verb) > patterns are mined from large corpora and automatically

» maximal length of dependency path generalised (optional elements, POS tags or semantic classes)
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Comparison of co-occurrence contexts Structured vs. unstructured context

Contexts range from general /implict to specific/explicit:

features are

» In unstructered models, context specification acts as a filter

textual / large span from same general domain .
> determines whether context token counts as co-occurrence

. > e.g. muste be linked by any syntactic dependency relation

small span collocations
) " » In structured models, feature terms are subtyped

sy.ntactlc ) attributes » depending on their position in the context
(single relation) (focus on aspect) » e.g. left vs. right context, type of syntactic relation, etc.
knowledge pattern properties
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Structured vs. unstructured dependency context

Structured vs. unstructured surface context
A dog bites a man. The man's dog bites a dog. A dog bites a man.

A dog bites a man. The man’'s dog bites a dog. A dog bites a man.
unstructured | bite unstructured | bite
dog | 4 dog | 4
man 3 man 2
A dog bites a man. The man's dog bites a dog. A dog bites a man. A dog bites a man. The man's dog bites a dog. A dog bites a man.
structured | bite- | bite-r structured | bite-subj | bite-obj
dog 3 1 dog 3 1
man 1 2 man 0 2
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Overview of DSM parameters

Comparison
[pre—processed corpus with linguistic annotation]

» Unstructured context
term-context matr/ \term—term matrix

» data less sparse (e.g. man kills and kills man both map to the
kill dimension of the vector Xman)

[define target terms} [define target & feature terms
!

type & size of co-occurrence

context tokens or types

» Structured context
» more sensitive to semantic distinctions
(kill-subj and kill-obj are rather different things!)
» dependency relations provide a form of syntactic “typing” of
the DSM dimensions (the “subject” dimensions, the . .
geometric analysis

“recipient” dimensions, etc.)
» important to account for word-order and compositionality

probabilistic analysis

embedding learned by

feature scaling
neural network

[similarity/distance measure + normalization]

!

[dimensionality reduction ]
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DSM parameters A taxonomy of DSM parameters

Context tokens vs. context types

» Features are usually context tokens, i.e. individual instances
» document, Wikipedia article, Web page, ...
» paragraph, sentence, tweet, ...
» “co-occurrence” count = frequency of term in context token

» Can also be generalised to context types, e.g.
» type = cluster of near-duplicate documents
type = syntactic structure of sentence (ignoring content)
type = tweets from same author
frequency counts from all instances of type are aggregated

v

v

v

» Context types may be anchored at individual tokens

» n-gram of words (or POS tags) around target
» subcategorisation pattern of target verb
= overlaps with (generalisation of) syntactic co-occurrence
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DSM parameters A taxonomy of DSM parameters

Marginal and expected frequencies

» Matrix of observed co-occurrence frequencies not sufficient

target feature o R C E

dog small 855 33,338 490,580 134.34

dog domesticated 29 33,338 918 0.25
» Notation

» O = observed co-occurrence frequency

» R = overall frequency of target term = row marginal frequency
» C = overall frequency of feature = column marginal frequency
>

N = sample size = size of corpus

» Expected co-occurrence frequency

_R.C

E
N
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DSM parameters A taxonomy of DSM parameters

Overview of DSM parameters

[pre—processed corpus with linguistic annotation]

\tfrm_term matrix

term-context matrix

[define target terms] [define target & feature terms]

!

[context tokens or types]

[type & size of co—occurrence]

\

geometric analysis

probabilistic analysis

feature scaling

embedding learned by
neural network

{similarity/distance measure + normalization

[dimensionality reduction ]
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DSM parameters A taxonomy of DSM parameters

Obtaining marginal frequencies

» Term-document matrix

» R = frequency of target term in corpus
» C = size of document (# tokens)
» N = corpus size

> Syntactic co-occurrence

» # of dependency instances in which target/feature participates

» N = total number of dependency instances
» can be computed from full co-occurrence matrix M

» Textual co-occurrence

» R, C, O are "document” frequencies, i.e. number of context
units in which target, feature or combination occurs
» N = total # of context units

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial — Part 2 wordspace.collocations.de
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DSM parameters A taxonomy of DSM parameters

Obtaining marginal frequencies

» Surface co-occurrence

> it is quite tricky to obtain fully consistent counts (Evert 2008)
> at least correct E for span size k (= number of tokens in span)
R-C
E=k ——
N
with R, C = individual corpus frequencies and N = corpus size
» can also be implemented by pre-multiplying R' = k- R
= alternatively, compute marginals and sample size by summing
over full co-occurrence matrix (= E as above, but inflated N)

» NB: shifted PPMI (Levy & Goldberg 2014) corresponds to a
post-hoc application of the span size adjustment

» performs worse than PPMI, but paper suggests they already
approximate correct E by summing over co-occurrence matrix
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DSM parameters A taxonomy of DSM parameters

Geometric vs. probabilistic interpretation

» Geometric interpretation

> row vectors as points or arrows in n-dimensional space
> very intuitive, good for visualisation
» use techniques from geometry and matrix algebra

» Probabilistic interpretation

> co-occurrence matrix as observed sample statistic that is
“explained” by a generative probabilistic model

» e.g. probabilistic LSA (Hoffmann 1999), Latent Semantic
Clustering (Rooth et al. 1999), Latent Dirichlet Allocation
(Blei et al. 2003), etc.

» explicitly accounts for random variation of frequency counts

> recent work: neural word embeddings

= focus on geometric interpretation in this tutorial
© Evert/Lenci/Baroni/Lapesa (CC-by-sa)
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DSM parameters A taxonomy of DSM parameters

Marginal frequencies in wordspace

DSM objects in wordspace (class dsm) include marginal

frequencies as well as counts of nonzero cells for rows and columns.

> TT$rows

term f nnzero
1 cat 22007 5
2 dog 50807 7
3 animal 77053 7
4 time 1156693 7
5 reason 95047 6
6 cause 54739 5
7 effect 133102 6
> TT$cols
> TT$globals$N

[1] 199902178
> TT$M # the full co-occurrence matrix

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial — Part 2 wordspace.collocations.de
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Overview of DSM parameters

[pre—processed corpus with linguistic annotation]

\tfrm-term matrix

term-context matrix

[define target terms] [define target & feature terms]

!

type & size of co-occurrence

[context tokens or typesJ

\

geometric analysis

probabilistic analysis

feature scaling embedding learned by

neural network

{similarity/distance measure + normalization]

!

[dimensionality reduction ]
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DSM parameters A taxonomy of DSM parameters

Feature scaling

Feature scaling is used to “discount” less important features:
» Logarithmic scaling: O’ =log(O + 1)
(cf. Weber-Fechner law for human perception)

» Relevance weighting, e.g. tf.idf (information retrieval)

tf.idf = tf - log(D/df)

» tf = co-occurrence frequency O
» df = document frequency of feature (or nonzero count)
» D = total number of documents (or row count of M)

> Statistical association measures (Evert 2004, 2008) take
frequency of target term and feature into account

» often based on comparison of observed and expected
co-occurrence frequency
» measures differ in how they balance O and E

DSM Tutorial — Part 2
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DSM parameters A taxonomy of DSM parameters

Other association measures

» simple log-likelihood (= local-MI)

G2:iz-(o-|og2%—(o—5)>

with positive sign for O > E and negative sign for O < E

» Dice coefficient
20

R+C

» Many other simple association measures (AMs) available

Dice =

» Further AMs computed from full contingency tables, see
» Evert (2008)
» http://www.collocations.de/
» http://sigil.r-forge.r-project.org/

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial — Part 2
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DSM parameters A taxonomy of DSM parameters

Simple association measures

» pointwise Mutual Information (MI)

)
MI = log, —
08> E
» local Ml o
local-MI = O - Ml = O - log, 5
» t-score
. O-—E
VO
target feature o E Ml local-MI  t-score
dog small 855 13434 2.67 2282.88 24.64
dog domesticated 29 0.25 6.85 198.76 5.34
dog sgjkj 1 0.00027 11.85 11.85 1.00

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial — Part 2

DSM parameters A taxonomy of DSM parameters

Applying association scores in wordspace

wordspace.collocations.de

> options(digits=3) # print fractional values with limited precision
> dsm.score(TT, score="MI", sparse=FALSE, matrix=TRUE)

breed tail feed kill important explain
cat 6.21 4.568 3.129 2.801 -Inf 0.0182
dog 7.78 3.081 3.922 2.323 -3.774 -1.1888
animal 3.50 2.132 4.747 2.832 -0.674 -0.4677
time -1.65 -2.236 -0.729 -1.097 -1.728 -1.2382
reason -2.30 -Inf -1.982 -0.388 1.472 4.0368
cause -Inf -0.834 -Inf -2.177 1.900 2.8329
effect -Inf -2.116 -2.468 -2.459 0.791 1.6312

1= sparseness of the matrix has been lost!

= cells with score x = —o0 are inconvenient

likely
-Inf
-0.4958
-0.0966
0.6392
2.8860
4.0691
0.9221

1= distribution of scores may be even more skewed than
co-occurrence frequencies themselves (esp. for local-Ml)

DSM Tutorial — Part 2
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DSM parameters A taxonomy of DSM parameters

Sparse association measures

» Sparse association scores are cut off at zero, i.e.

f(X):{X x>0

0 x<0

» Also known as “positive” scores
» PPMI = positive pointwise Ml (e.g. Bullinaria & Levy 2007)
» wordspace computes sparse AMs by default = "MI" = PPMI
> Preserves sparseness if x < 0 for all empty cells (O = 0)
» combine with signed AM (x > 0 for O > E, x < 0 for O < E)
> sparseness may even increase: cells with x < 0 become empty
» Further thinning may be beneficial (Polajnar & Clark 2014)

» apply shifted cutoff threshold x > 6 (Levy et al. 2015)
> keep only k top-scoring features for each target

DSM Tutorial — Part 2 wordspace.collocations.de 39/84
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DSM parameters A taxonomy of DSM parameters

Association scores & transformations in wordspace

> dsm.score(TT, score="MI", matrix=TRUE) # PPMI

breed tail feed kill important explain likely
cat 6.21 4.57 3.13 2.80 0.000 0.0182 0.000
dog 7.78 3.08 3.92 2.32 0.000 0.0000 0.000
animal 3.50 2.13 4.75 2.83 0.000 0.0000 0.000
time 0.00 0.00 0.00 0.00 0.000 0.0000 0.639
reason 0.00 0.00 0.00 0.00 1.472 4.0368 2.886
cause 0.00 0.00 0.00 0.00 1.900 2.8329 4.069
effect 0.00 0.00 0.00 0.00 0.791 1.6312 0.922

> dsm.score(TT, score="simple-11",
> dsm.score(TT, score="simple-11",

matrix=TRUE)
transf="log"

, matrix=T)

# logarithmic co-occurrence frequency
> dsm.score(TT, score="freq", transform="log", matrix=T)

# now try other parameter combinations
> 7dsm.score # read help page for available parameter settings
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DEWVILEEIEEE A taxonomy of DSM parameters

Score transformations

An additional scale transformation can be applied in order to
de-skew association scores:
» signed logarithmic transformation

f(x) = *log(|x] + 1)
» sigmoid transformation as soft binarization
f(x) = tanh x
> sparse AM as (shifted) cutoff transformation

o~ - —og | - - ’
— sigmoid
= sparse ’
= = shited pid

f(x)
\
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DSM parameters A taxonomy of DSM parameters

Scaling of column vectors

» In statistical analysis and machine learning, features are
usually centered and scaled so that

mean p =0

variance o2 =1

» In DSM research, this step is less common for columns of M

» centering is a prerequisite for certain dimensionality reduction
and data analysis techniques (esp. PCA)

> but co-occurrence matrix no longer sparse!

» scaling may give too much weight to rare features

» M cannot be row-normalised and column-scaled at the same
time (result depends on ordering of the two steps)

DSM Tutorial — Part 2 wordspace.collocations.de 42 /84
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Overview of DSM parameters Geometric distance = metric
[pre—processed corpus with linguistic annotation] .
> Distanc:? betwr_een've'cto_rs 2,
term-context matr/ \erm—term matrix u,ve R" = (d|5)5|m||ar|ty 61 u
>u:(u1,...,u,,) [ .
[define target terms} [define target & feature terms} > v=(vi,..., V) b (@5 =5
ey Wl iy (@,7) =
' » Euclidean distance d; (u,v) ;] w@n=3s
(context tokens or typesJ [type & size of co-occurrence > “City block” Manhattan N v
distance dj (u,v) 1
' . » Both are special cases of the —
geometric analysis robabilistic analvsis — T
: ¢ Y Minkowski p-distance dj, (u,v) 1oz o3 4 s 6 M
feature scaling . P
embedding learned by (for p e [17 oo])

neural network

similarity/distance measure + normalization

)1/P

dp (u,v) := (Jur —vi|P + - + |up — valP

[dimensionality reduction} doo (u> V) = max{|u1 - V1|7 EEN) |u,, - Vn|}
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Geometric distance = metric Computing distances
» Distance between vectors 2 Preparation: store “scored” matrix in DSM object
n TN
u,v € R" = (dis)similarity 6 u > TT <- dsm.score(TT, score="freq", transform="log")
> u=(u1,...,Up) 54
v =(Vi,...,Vn) 4 d (@,7) =5 Compute distances between individual term pairs . ..
» Euclidean distance d; (u,v) ,f @ =ss
» “City block” Manhattan 1 v > pair.distances(c("cat","cause"), c("animal","effect"),
distance d (u v) TT, method="euclidean")
LN T cat/animal cause/effect
» Extension of p-distance d, (u, v) — 4.16 1.53
(for0<p<1) 1 2 3 4 5 & 2
. or full distance matrix.
dp (u,v) :=|ug —w1|P + -+ |up — vp|P
) > dist.matrix(TT, method="euclidean")
do (u,v) = #{’ | uj # Vi} > dist.matrix(TT, method="minkowski", p=4)
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Distance and vector length = norm Normalisation of row vectors

> Intuitively, distance

1 i Two dimensions of English V-Obj DSM
d (u,v) should correspond » Geometric distances only o
to length [lu — v|| of meaningful for vectors of the -
displacement vector u —v 0(8,5) = i — 5] same length [|x| §
> d(u,v) is a metric » Normalize by scalar division: . knife
> [ju—v| is a norm X =x/||x|| = (%, 2, ..) < .
> [lull = d(u,0) " o EREE .
> Any norm-induced metr with x| = 1 s
ny norm-induced metric . . "
-y A - = d(#,0) » Norm must be compatible e \
is translation-invariant > . .
: .M with distance measure! boat 1
; i 87 : ; dog
> d, (u,v) = u—vl|, ovigin » Special c'ase. .scale to relative cat ‘ o
» Minkowski p-norm for p € [1,00] (not p < 1): freq”ue”r1C|es|W||th ol ° . o w1 1
X|l1=|X1|+ -+ |[Xn
fullp == (Jur]P + -+ |u,,|p)1/p =>» probabilistic interpretation get
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Norms and normalization Distance measures for non-negative vectors
> rowNorms (TT$S, method="euclidean") » Information theory: Kullback-Leibler (KL) divergence for
cat dog animal time reason cause effect probability vectors (5= non-negative, ||x||; = 1)

6.90 8.96 8.82 10.29 8.13 6.86 6.52

n
uj
D(uljv) = Z u; - logy —
> TT <- dsm.score(TT, score="freq", transform="log", i=1 Vi
normalize=TRUE, method="euclidean")

> rowNorms (TT$S, method="euclidean") # all = 1 now » Properties of KL divergence
> dist.matrix(TT, method="euclidean") » most appropriate in a probabilistic interpretation of M
cat dog animal time reason cause effect » zeroes in v without corresponding zeroes in u are problematic

et D000 @ozzs s Ueed® Wopn LLIA Aodie 16 » not symmetric, unlike geometric distance measures
dog 0.224 0.000 0.398 0.698 1.065 1.179 1.113 . . .

- > alternatives: skew divergence, Jensen-Shannon divergence
animal 0.473 0.398 0.000 0.426 0.841 0.971 0.860
time 0.782 0.698 0.426 0.000 0.475 0.585 0.502
reason 1.121 1.065 0.841 0.475 0.000 0.277 0.198 > A symmetric distance metric (Endres & Schindelin 2003)
cause 1.239 1.179 0.971 0.585 0.277 0.000 0.224 +
effect 1.161 1.113 0.860 0.502 0.198 0.224 0.000 Dw = D(ul|z) + D(v||z) with z="""

2
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Similarity measures

» Angle o between vectors

. . Two dimensions of English V-Obj DSM
u,v € R" is given by

o
g
n
i—1 Uj - Vi S |
cosa = Lict = it
2 2 nife
Joi v :
u'v 3
= S o 7 * = °©
. a=543
[ull2 - [[v[]2 3
g
» cosine measure of boat %
similarity: cos« & 7 * Y dog
» cosa = 1 = collinear . e *
T T T T T T

» cosa = 0 = orthogonal

» Corresponding metric: get
angular distance «

DSM Tutorial — Part 2
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DSM parameters A taxonomy of DSM parameters

Similarity measures for non-negative vectors

» Generalized Jaccard coefficient = shared features

> iy minfui, vi}

>y max{uj, v}

» 1 — J(u,v) is a distance metric (Kosub 2016)

J(u,v) =

» An asymmetric measure of feature overlap (Clarke 2009)

Z?:l min{u,-, V,'}
D1 Ui

o(u,v) =
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DSM parameters A taxonomy of DSM parameters

Euclidean distance or cosine similarity?

da (u,v) = [Ju —vll2 =

> (ui—vi)?

i
Zu,-z+2vi2—22u,-v,-
i i i

VIlul3 + v - 2uTv
=+/2—2cos ¢

1= d) (u,v) is a monotonically increasing function of ¢

Euclidean distance and cosine similarity are equivalent: if vectors
have been normalised (||ul|2 = ||v||2 = 1), both lead to the same
neighbour ranking.
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DSM parameters A taxonomy of DSM parameters

Overview of DSM parameters

[pre—processed corpus with linguistic annotation]

\tfrm—term matrix

term-context matrix

[define target terms]

[define target & feature terms]

!

type & size of co-occurrence

[context tokens or types]

\

geometric analysis
feature scaling

[similarity/distance measure + normalization]

dimensionality reduction

DSM Tutorial — Part 2

probabilistic analysis

embedding learned by
neural network
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DSM parameters A taxonomy of DSM parameters

Dimensionality reduction = model compression

» Co-occurrence matrix M is often unmanageably large
and can be extremely sparse

» Google Web1T5: 1M x 1M matrix with one trillion cells, of
which less than 0.05% contain nonzero counts (Evert 2010)

= Compress matrix by reducing dimensionality (= rows)

» Feature selection: columns with high frequency & variance

» measured by entropy, chi-squared test, nonzero count, ...
» may select similar dimensions and discard valuable information

» Projection into (linear) subspace

» principal component analysis (PCA)

» independent component analysis (ICA)

» random indexing (RI)

= intuition: preserve distances between data points
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Dimensionality reduction & latent dimensions

o _
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story idea
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people year
< -
supply
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o
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o
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buy
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Dimensionality reduction & latent dimensions

Landauer & Dumais (1997) claim that LSA dimensionality

reduction (and related PCA technique) uncovers latent
dimensions by exploiting correlations between features.

. noun buy  sell
» Example: term-term matrix antique 512 550
» V-Obj co-oc. extracted from BNC bread 5.96 3.99
» targets = noun lemmas ;Omp“ter 461;2 2?3

> features = verb lemmas actory ‘ :
group 493 428
» feature scaling: association scores jewellery | 511 5.73
(SketchEngine log Dice) mill 514 541
. people 3.00 4.26
> k = 186 nouns Wlth fbuy + fse” Z 25 record 6.81 6.68
» n =2 dimensions: buy and sell souvenir | 5.45  4.67
ticket 8.93 8.74
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DSM parameters A taxonomy of DSM parameters

Motivating latent dimensions & subspace projection

» The latent property of being a commodity is “expressed”
through associations with several verbs: sell, buy, acquire, . ..

» Consequence: these DSM dimensions will be correlated

> |dentify latent dimension by looking for strong correlations
(or weaker correlations between large sets of features)

» Projection into subspace V of k < n latent dimensions

as a "noise reduction” technique - LSA

» Assumptions of this approach:

> “latent” distances in V are semantically meaningful

» other “residual” dimensions represent chance co-occurrence
patterns, often particular to the corpus underlying the DSM
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Step 1: Centering the data set

o _|
» Uncentered .
data set 't:'-"
Y “‘};’"'.
o .
» Centered © ] R o
. ot
data set _ L
2 .
» Distance °
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= variance
\.(‘7 -
T T T T
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buy
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Step 1: Centering the data set
» Uncentered ¥ .o
data set St
~ - -
» Centered : . .
data set I L
3 A
» Distance & .
information
= variance s
B variance = 3.35
2 _ 1 (2 T T T T T
0% = == X
k=1 2 ” H -4 2 0 2 4
i=1
buy
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At
Step 1: Centering the data set

of DSM par

» Uncentered i
data set

» Centered ©
data set _

» Distance ol
information
= variance

buy
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Step 2: Orthogonal projection into optimal subspace

sell

© Evert/Lenci/Baroni/Lapesa (CC-by-sa)

DSM Tutorial — Part 2 wordspace.collocations.de

59 /84

60/84



L
Step 2: Orthogonal projection into optimal subspace

sell

variance = 2.14
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Step 3: Further orthogonal dimensions
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Step 2: Orthogonal projection into optimal subspace
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Dimensionality reduction by PCA

> Principal component analysis (PCA)

» orthogonal projection into orthogonal latent dimensions

» finds optimal subspace of given dimensionality (such that
orthogonal projection preserves distance information)

> but requires centered features = no longer sparse

» Singular value decomposition (SVD)

» the mathematical algorithm behind PCA
» often applied without centering in distributional semantics
> optimality of subspace not guaranteed (= part 5)

> NB: row vectors should be renormalised after PCA/SVD

> unless cosine similarity / angular distance is used
== also normalise vectors before dimensionality reduction

DSM Tutorial — Part 2
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DEWVIEEIEEE A taxonomy of DSM parameters

Dimensionality reduction by RI

» Random indexing (RI)
> project into random subspace (Sahlgren & Karlgren 2005)
» reasonably good if there are many subspace dimensions
> can be performed online w/o collecting full co-oc. matrix

sell

variance = 2.14

buy
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Scaling latent dimensions

» Capture different amounts of distance info (= variance)

» Indicated by singular values o; of PCA/SVD algorithm

» Skip first k dimensions, e.g. k = 50 (Bullinaria & Levy 2012)
» Power-scaling of dimensions: " (Caron 2001)

» Bullinaria & Levy (2012) report positive effect
> esp. with P = 0 to equalize dimensions (whitening)

typical singular values o skip first 50 dimensions

100 20 0 w00 3 100 20 0 w00

latont SVD dimensions latont SVD dimensions

- power scaling P = 1/2 o power scaling P =0
0 100 20 0 w0 o 100 20 0 w0

latont SVD dimensions. latent SVD dimensions

DSM Tutorial — Part 2
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Dimensionality reduction in practice

# it is customary to omit the centering: SVD dimensionality reduction
> TT2 <- dsm.projection(TT, n=2, method="svd")

> TT2

svdl svd2
cat -0.733 -0.6615
dog -0.782 -0.6110
animal -0.914 -0.3606
time -0.993 0.0302
reason -0.889 0.4339
cause -0.817 0.5615
effect -0.871 0.4794

> x <= TT2[, 1] # first latent dimension

>y <= TT2[, 2] # second latent dimension

> plot(x, y, pch=20, col="red",
xlim=extendrange(x), ylim=extendrange(y))

> text(x, y, rownames(TT2), pos=3)

DSM Tutorial — Part 2
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Power-scaling in practice

> TT2 <- dsm.projection(TT, n=2, method="svd", power=0)

> TT2

svdl svd2
cat -0.322 -0.5110
dog -0.343 -0.4721
animal -0.401 -0.2786
time -0.436 0.0233
reason -0.390 0.3353
cause -0.359 0.4338
effect -0.383 0.3704

# power-scaling can also be applied post-hoc

> sigma <- attr(TT2, "sigma") # singular values

> scaleMargins(TT2, cols=sigma~0.5) # P = 1/2

> scaleMargins(TT2, cols=sigma) # unscaled (P = 1)

DSM Tutorial — Part 2
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DSM parameters

Examples
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[DSIVECETETESIC  Examples

Some well-known DSM examples
Infomap NLP (Widdows 2004)

» term-term matrix with unstructured surface context
» weighting: none
» distance measure: cosine

» dimensionality reduction: SVD

Random Indexing (Karlgren & Sahlgren 2001)

» term-term matrix with unstructured surface context
» weighting: various methods
» distance measure: various methods

» dimensionality reduction: random indexing (RI)
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DSM parameters Examples

Some well-known DSM examples

Latent Semantic Analysis (Landauer & Dumais 1997)

» term-context matrix with document context
> weighting: log term frequency and term entropy
» distance measure: cosine

» dimensionality reduction: SVD

Hyperspace Analogue to Language (Lund & Burgess 1996)

» term-term matrix with surface context
> structured (left/right) and distance-weighted frequency counts
» distance measure: Minkowski metric (1 < p < 2)

> dimensionality reduction: feature selection (high variance)

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial — Part 2 wordspace.collocations.de 68 /84

[DSIVELETETETEN  Examples

Some well-known DSM examples

Dependency Vectors (Padé & Lapata 2007)

» term-term matrix with unstructured dependency context
> weighting: log-likelihood ratio

> distance measure: PPMI-weighted Dice (Lin 1998)

» dimensionality reduction: none

Distributional Memory (Baroni & Lenci 2010)

» term-term matrix with structured and unstructered
dependencies + knowledge patterns

> weighting: local-MI on type frequencies of link patterns
» distance measure: cosine

» dimensionality reduction: none
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and an unexpected application

Authorship attribution (Burrows 2002)

» Burrows's Delta method is very popular in modern literary
stylometry and authorship attribution (Evert et al. 2017)

document-term matrix with word forms as features
weighting: relative frequency of word form in document
feature selection: 200-5,000 most frequent words (mfw)

columns are standardized (z = 0, 0> = 1) = z-scores

vVVvyVvVYyvyy

clustering of documents based on various distance metrics
(or nearest-neighbour classifier for known authors)

v

dimensionality reduction: none

v

main result: angle/cosine >~ Manhattan > Euclidean
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ISRV Sparse matrices

Scaling up to the real world

» So far, we have worked on minuscule toy models
== \We want to scale up to real world data sets now

» Example 1: window-based DSM on BNC content words

> 83,926 lemma types with f > 10

» term-term matrix with 83,926 - 83,926 = 7 billion entries

» standard representation requires 56 GB of RAM (8-byte floats)
» only 22.1 million non-zero entries (= 0.32%)

» Example 2: Google Web 1T 5-grams (1 trillion words)

> more than 1 million word types with f > 2500
» term-term matrix with 1 trillion entries requires 8 TB RAM
» only 400 million non-zero entries (= 0.04%)
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Building a DSM Sparse matrices
Outline

Building a DSM
Sparse matrices
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Sparse matrix representation

» Invented example of a sparsely populated DSM matrix

‘ eat get hear kill see use
boat . 59 . . 39 23
cat . . . 26 58
cup . 98 : : :
dog | 33 . 42 . 83 .
knife . . . . . 84
pig | 9 . . 27 . .

» Store only non-zero entries in compact sparse matrix format

row | col | value row | col | value
1 2 59 4 1 33
1 5 39 4 3 42
1 6 23 4 5 83
2 4 26 5 6 84
2 5 58 6 1 9
3 2 98 6 4 27
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Building a DSM Sparse matrices

Working with sparse matrices

» Compressed format: each row index (or column index) stored
only once, followed by non-zero entries in this row (or column)

» convention: column-major matrix (data stored by columns)

» Specialised algorithms for sparse matrix algebra
> especially matrix multiplication, solving linear systems, etc.
» take care to avoid operations that create a dense matrix!

» R implementation: Matrix package
» essential for real-life distributional semantics
» wordspace provides additional support for sparse matrices
(vector distances, sparse SVD, ...)

» Other software: Matlab, Octave, Python + SciPy
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Triplet tables

» A sparse DSM matrix can be represented as a table of triplets
(target, feature, co-occurrence frequency)
» for syntactic co-occurrence and term-document matrices,
marginals can be computed from a complete triplet table
» for surface and textual co-occurrence, marginals have to be
provided in separate files (see 7read.dsm.triplet)

noun  rel verb f mode
dog subj  bite 3 spoken
dog subj  bite 12 written
dog obj bite 4 written

dog obj stroke 3 written

» DSM_VerbNounTriples_BNC contains additional information

» syntactic relation between noun and verb
» written or spoken part of the British National Corpus
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Building a DSM Example: a verb-object DSM
Outline

Building a DSM

Example: a verb-object DSM
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Constructing a DSM from a triplet table

> Additional information can be used for filtering (verb-object
relation), or aggregate frequencies (spoken + written BNC)

> tri <- subset(DSM_VerbNounTriples_BNC, rel == "obj")

» Construct DSM object from triplet input
» raw.freq=TRUE indicates raw co-occurrence frequencies
(rather than a pre-weighted DSM)
» constructor aggregates counts from duplicate entries
» marginal frequencies are automatically computed

> VObj <- dsm(target=tri$noun, feature=tri$verb,
score=tri$f, raw.freq=TRUE)
> VObj # inspect marginal frequencies (e.g. head(VObj$rows, 20))

DSM Tutorial — Part 2 wordspace.collocations.de
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Exploring the DSM

> VObj <- dsm.score(VObj, score="MI", normalize=TRUE)

> nearest.neighbours(VObj, "dog") # angular distance

horse cat animal rabbit fish guy
73.9 75.9 76.2 77.0 77.2 78.5
cichlid kid bee creature

78.6 79.0 79.1 79.5

> nearest.neighbours(VObj, "dog", method="manhattan")
7# NB: we used an incompatible Euclidean normalization!

> VObj50 <- dsm.projection(VObj, n=50, method="svd")
> nearest.neighbours(VObj50, "dog")
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Building a DSM Example: a verb-object DSM

Practice

» How many different models can you build from
DSM_VerbNounTriples_BNC?

» Apply different filters, scores, transformations and metrics
1= explore nearest neighbours of selected words

» Code examples for this part show additional options

» Download practice session (part2_input_formats.R)
-» different ways of loading your own co-occurrence data
» Build real-life DSMs from pre-compiled co-occurrence data

» http://wordspace.collocations.de/doku.php/course:material
» also download R script with instructions (part2_exercise.R)
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