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Matrices and vectors
> k x n matrix M € RK*" is a rectangular array of real numbers

mip -+ Mip
M:

Mgy -+ Mgy
» Each row m; € R" is an n-dimensional vector
m; = (m,-1, mio, ..., m,-,,)
» Similarly, each column is a k-dimensional vector € R¥

> options(digits=3)

> M <- DSM_TermTerm$M

> M[2, 1 # row vector my for ‘‘dog"

> M[, 5] # column vector for “‘important”
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Matrices and vectors Scalar operations

» Vector x € R" as single-row or single-column matrix
» x=x'T = nx 1 matrix (“vertical”) » Scalar operations perform the same transformation on each
» x” =1 x n matrix (“horizontal”) element of a vector or matrix, e.g.
» transposition operator T swaps rows & columns of matrix » add / subtract fixed shift 4 € R

> We need vectors r € R¥ and ¢ € R” of marginal frequencies » multiply / divide by fixed factor o € R

» Notation for cell jj of co-occurrence matrix: > apply function (log, /-, ..) to each element
» mj; = O ... observed co-occurrence frequency » Allows efficient processing of large sets of values
» r;=R ... row marginal (target) » Element-wise binary operators on matching vectors / matrices
» ¢;= C ... column marginal (feature) > x +y = vector addition
» N ... sample size

> x @y = element-wise multiplication (Hadamard product)

> r <- DSM_TermTerm$rows$f . o

> ¢ <= DSM_TermTerm$cols$f > log|(|M + 1')' # dlscou'r?ted log frequency weighting .

> N <- DSM_TermTerm$globals$N > (M["cause", ] + M["effect", ]) / 2 # centroid vector
> t(r) # “‘horizontal’’ vector

> t(t(xr)) # "vertical” vector
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The outer product Outline
» Compute matrix E € R¥*" of expected frequencies
ricj Matrix algebra
N

Matrix multiplication
i.e. r[i] * c[j] for each cell jj

» This is the outer product of r and c

ni - [Cl Q- cn} ne ne - nc

Ik rkC1 k€2 -+ IkCp

» The inner product of x,y € R” is the sum x1y1 + ... + XnVn

> outer(r, c) / N
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Matrix algebra Matrix multiplication

Matrix multiplication

cij
ajj = |bi bin .
Cnj
A = B . C
(k x m) (k x n) (nx m)

» B and C must be conformable (in dimension n)

» Element aj; is the inner product of the i-th row of B and the
j-th column of C

n
aj = bicij+ ...+ bincoj = Y bjrcyj
t=1
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Matrix algebra Matrix multiplication

Transposition and multiplication

» The transpose AT of a matrix A swaps rows and columns:

ap b 4
1 1 _|:31 an a3:|

an b2
a5 bs b1 by b3

» Properties of the transpose:
> (A+B)T =AT + BT
» (AA)T = \(AT) =: AAT
» (A-B)T =B7 - AT [note the different order of A and B!]
1T =1
» A is called symmetric iff AT = A

» symmetric matrices have many special properties that will
become important later (e.g. eigenvalues)
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Matrix algebra Matrix multiplication

Some properties of matrix multiplication

A(BC) = (AB)C =: ABC

A(B +B’) = AB + AB’
(A+A)B=AB+AB

Scalar multiplication:  (AA)B = A(AB) = A\(AB) =: AAB

Associativity:
Distributivity:

» Not commutative in general: AB # BA
» The k-dimensional square-diagonal identity matrix

1
ly == with Ik-A=A-1,=A
1

is the neutral element of matrix multiplication
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Matrix algebra Matrix multiplication

The outer product as matrix multiplication
» The outer product is a special case of matrix multiplication
1 T
E=p(r-c’)

» The other special case is the inner product
n
xTy = in}’i
i=1

» NB: x-x and x” - x”T are not conformable

# three ways to compute the matrix of expected frequencies
> E <- outer(r, c¢) / N

> E <= (r %% t(c)) / N

> E <- tcrossprod(r, ¢c) / N

> E
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Association scores & normalization
Outline

Matrix algebra

Association scores & normalization
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Matrix algebra Association scores & normalization

Normalizing vectors

» Compute Euclidean norm of vector x € R":

[x][2 = \/x2 + ...+ x2

» Normalized vector ||xg||2 = 1 by scalar multiplication:

1
Xp = T——X
12

> x <- S[2, ]

> b <~ sqrt(sum(x ~ 2)) # Euclidean norm of x
>x0<-x /Db # normalized vector

> sqrt(sum(x0 ~ 2))
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Matrix algebra Association scores & normalization

Computing association scores

» Association scores = element-wise combination of M and E,
e.g. for (pointwise) Mutual Information

S =log,(MQE)

> @ = element-wise division similar to Hadamard product ®

» For sparse AMs such as PPMI, we need to compute
max {sj;, 0} for each element of the scored matrix S

> log2(M / E)

> S <- pmax(log2(M / E), 0) # notmax() !
>SS
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Matrix algebra Association scores & normalization

Normalizing matrix rows

> Compute vector b € R¥ of norms of row vectors of S

» Can you find an elegant way to multiply each row of S with
the corresponding normalization factor bi_l?

» Multiplication with diagonal matrix D, !

So = Db_l -S
-1
1 S11 -+ Sin
So = :
b1
P Sk1 Skn

1= What about multiplication with diagonal matrix on the right?
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Matrix algebra Association scores & normalization

Normalizing matrix rows

» Compute vector b € R¥ of norms of row vectors of S

» Can you find an elegant way to multiply each row of S with
the corresponding normalization factor b; '?

» Multiplication with diagonal matrix D, !

So=Dp 'S

v

b <- sqrt(rowSums(S~2))
> b <- rowNorms(S, method="euclidean") # more efficient

> S0 <- diag(1 / b) %*% S
S0 <- scaleMargins(S, rows=(1 / b)) # much more efficient

v

\4

S0 <- normalize.rows(S, method="euclidean") # the easy way
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Metric: a measure of distance

> A metric is a general measure of the distance d(u,v)
between points u and v, which satisfies the following axioms:

» d(u,v) =d(v,u)

» d(u,v)>0foruv
> d(u,u) =0

>

d(u,w) < d(u,v)+ d(v,w) (triangle inequality)
» Metrics form a very broad class of distance measures, some of
which do not fit in well with our geometric intuitions

» Useful: family of Minkowski p-metrics

1
dp (u,v) := (Jug — 1P + -+ + |up — valP) P op>1
dp (u,v) :=|ug —wi|P + -+ |up — vp|P 0<p<l1
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Metrics and norms
Outline

Geometry
Metrics and norms
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Norm: a measure of length

» A general norm |lu|| for the length of a vector u must satisfy
the following axioms:

> |jul| >0 foru#0

> [[Aul| = |A] - [Ju]| (homogeneity)

> JJu+v| <|ull + |Jv|| (triangle inequality)
» Every norm induces a metric

d(u,v) = [lu—v]

with two desirable properties
» translation-invariant: d(u+x,v+x) = d(u,v)
» scale-invariant: d(Au, Av) = || - d(u,v)
» d, (u,v) is induced by the Minkowski norm for p > 1:

1
lullp = (lugl? + -+ [un]?) /P
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Geometry Metrics and norms

Norm: a measure of length
Unit circles for different p-norms > Visualisation Of norms in R2
by plotting unit circle, i.e.
points u with |jul| =1

1.0

0.5

» Here: p-norms |||, for
different values of p

0.0

» Triangle inequality <—
unit circle is convex

» This shows that p-norms

-1.0
1

triangle inequality
-1.0 -0.5 0.0 0.5 1.0

= Consequence for DSM: p <« 2 sensitive to small differences in
many coordinates, p > 2 to larger differences in few coord.
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Euclidean norm & inner product

» The Euclidean norm |Ju||2 = VuTu is special because it can
be derived from the inner product:

xTy:x1y1+~--+x,,y,,

» The inner product is a positive definite and symmetric bilinear
form with an important geometric interpretation:

UTV

COS =
= Tulz - vl

for the angle ¢ between vectors u,v € R”
> the value cos ¢ is known as the cosine similarity measure

» In particular, u and v are orthogonal iff u’v =0
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Angles and orthogonality
Outline

Geometry

Angles and orthogonality
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Cosine similarity in R

» Cosine similarities can be computed very efficiently if vectors

are pre-normalized, so that |juls = |lv]2 =1

w5 just need all inner products m/ m; between row vectors of M

my
my . . .
T
M-M' = c(mp My my

my

g (“A '“A.T)U':: nng_nnj

# cosine similarities for row-normalized matrix:
> sim <- tcrossprod(S0)
> angles <- acos(pmin(sim, 1)) * (180 / pi)
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ArtanerizE Ty G P
Euclidean distance or cosine similarity? Outline

» Proof that Euclidean distance and cosine similarity are
equivalent looks much simpler in matrix algebra

» Assuming that |jul|2 = |lv||2 = 1, we have:

o (u,v) = [lu—v[o = \/(u—v)T(u—v)
=VuTu+viv—2uTv
= /Iul3 + Iv[3 - 2uTv

=+/2—2cos¢

Dimensionality reduction

Orthogonal projection
= dy (u,v) is a monotonically increasing function of ¢ & prel
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Oz ic] e st @ izgaie) (il
Linear subspace & basis Linear subspace & basis

» A linear subspace B C R” of rank r < n is spanned by a set

» Basis matrix V. € R™" with column vectors b;:
of r linearly independent basis vectors

u=xiby +... +xb, = Vx

B = {bl,...,b,—}
» Every point u in the subspace is a unique linear combination

of the basis vectors xibi + ..+ X by by - by x1

xibor ...+ xebor | Hbor oo by

u=xib;y +... 4+ xb, B

Xr

with coordinate vector x € R" Xtbot 4 4 Xrbor b bnr
> Basis matrix V. € R™" with column vectors b;: u _ Vv _ x

u — Vx (nx1) (nxr) (rx1)
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DI EELE A ST Orthogonal projection

Orthonormal basis

» Particularly convenient with orthonormal basis:

[bill2 =1
b/b; =0 for i # j

» Corresponding basis matrix V is (column)-orthogonal
Vv =1,

and defines a Cartesian coordinate system in the subspace
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DINERETNEIRAAE TS Orthogonal projection

The mathematics of projections

» For an orthogonal basis matrix V with columns by, ..., b,, the
projection into the rank-r subspace B is given by

r
Pu = <Z b,-b,-T> u=VV'u
i=1

and its subspace coordinates are x =V 'u
» Projection can be seen as decomposition into the projected
vector and its orthogonal complement

u=Pu+ (u—Pu)=Pu+(I-P)u=Pu+Qu

» Because of orthogonality, this also applies to the squared
Euclidean norm (according to the Pythagorean theorem)

lull = [Pul® + | Qu]®
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DI ET A S Orthogonal projection

The mathematics of projections

» 1-d subspace spanned by u
basis vector ||b|, =1

» For any point u, we have

b’ b’ B
cosp = - =21 ,_u ¢ Pu=b(®b"w)
ol ull ™ Tl = AR
2= 1
» Trigonometry: coordinate
\ x

of point on the line is .
x = |lull2-cosp=bTu

» The projected point in original space is then given by
b-x=b(b"u) = (bb")u = Pu

where P is a projection matrix of rank 1
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DI COETHE AT ITa S Orthogonal projection

Aside: the matrix cross-product

> We already know that the (transpose) cross-product MM7™
computes all inner products between the row vectors of M

» But VV7 it can also be unterstood as a superposition of the
outer products of the columns of V with themselves

b11 ‘[bn bln} br1 '[brl brn}
v’ = |: + oo+ |
bin b
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DI EELE A ST Orthogonal projection

Projections in R

# column basis vector for “‘animal’’ subspace
>b <- t(t(c(1, 1, 1, 1, .5, 0, 0)))
> b <- normalize.cols(b) # basis vectors must be normalized

v

(x <= M %*% b) # projection of data points into subspace coordinates
x %% t(b) # projected points in original space
> tcrossprod(x, b) # outer() only works for plain vectors

v

> P <- b %x% t(b) +# projection operator
>P - t(P) # note that P is symmetric
> M %% P # projected points in original space

DSM Tutorial — Part 4 wordspace.collocations.de
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DINERETNEIRAAE TS Orthogonal projection

Optimal projections and subspaces

» Optimal subspace maximises R? across a data set M, which is
now specified in terms of row vectors m/:

x] =m/V m/P=m/vv’
X =MV MP = MVV'

» We will now show that the overall projection quality is

2 Sha|mlP[2 _ [MP2
M2

k
i:1||miT||2

with the (squared) Frobenius norm

k
IM[[E = "(my)* = |mi|?
i i=1
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DI ET A S Orthogonal projection

Optimal projections and subspaces

» Orthogonal decomposition of squared distances btw vectors

lu—v|* = |[Pu—Pv|? + [|Qu - Qu]?

» Define projection loss as

difference btw squared distances u

[P = w)[? = Ju = v|?] A N
= [lu =[] = [|P(u—v)|? 7 -
_ 2 v
= u—v >

Q)| 55

<
» Projection quality measure: : ?@/
Pu
g2 = IPlu—v)|?
[Ju—v|]?

wordspace.collocations.de
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DI COETHE AT ITa S Orthogonal projection

Optimal projections and subspaces

» For a centered data set with >~; m; = 0, the Frobenius norm
corresponds to the average (squared) distance between points

f'(,j:IHmi —mj|?
= ¥ jm1(mi —m))T(m; — m;)
k
=7 je1 (Imi[? + [[mj[|> — 2m[ m;)

= YLlMIE + S IME - 255 mT (S m)
N—

0
=2k- M|z
» Similarly for the projection loss:
fallm —m)QI® 2k MQIZ o

Zi,j:l”mi - mj||2 2k - ||M||12E
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PCA & SVD
Outline

Dimensionality reduction

PCA & SVD
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Singular value decomposition

» m < min{k, n} is the inherent dimensionality (rank) of M

» Columns a; of U are called left singular vectors,
columns b; of V (= rows of V) are right singular vectors

» Recall the “outer product” view of matrix multiplication:
m
uv’ => ab/
i=1
» Hence the SVD corresponds to a sum of rank-1 components
m
M=UZV’™ =) oab/
i=1
DSM Tutorial — Part 4
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Singular value decomposition

» Fundamental result of matrix algebra: singular value
decomposition (SVD) factorises any matrix M into

M=UxV’

where U and V are orthogonal and X is a diagonal matrix of
singular values o1 >0, > - >0, >0

n m
n
o1 m
_ . T
kM = |k U moe m vV
X onm
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Singular value decomposition

> Key property of SVD: the first r components give the best
rank-r approximation to M with respect to the Frobenius
norm, i.e. they minimize the loss

IU.Z,V] = M|z =M, - M|z

== Truncated SVD

» U,, V, = first r columns of U, V
» ¥, = diagonal matrix of first r singular values

» It can be shown that

m r
IM[[E =) 0f and [M[E =D of
i=1 i=1
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SVD dimensionality reduction

» Columns of V, form an orthogonal basis of the optimal rank-r
subspace because

MP =MV, V] =UzV'V,V] =U,Z,V] = M,
——

=,

» Dimensionality reduction uses the subspace coordinates
MV, =U,x,

» If M is centered, this also gives the best possible preservation
of pairwise distances = principal component analysis (PCA)

= but centering is usally omitted in order to maintain sparseness,
so SVD preserves vector lengths rather than distances

DSM Tutorial — Part 4
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FEAGSTD
SVD projection in R

fact <- svd(S0)
round(fact$u, 3)

# SVD decomposition of Sg

# left singular vectors (columns) = U
round(fact$v, 3) # right singular vectors (columns) = V
round (fact$d, 3) # singular values = diagonal of X

note that Sg has effective rank 6 because 07 ~ 0
barplot(fact$d ~ 2) # R? contributions

V:ﬁ:VVVV

r <- 2 # truncated rank-2 SVD
(U.r <- fact$ul, 1:r])

(Sigma.r <- diag(fact$d[1:r], nrow=r))
(V.r <- fact$v[, 1:r])

V V V V
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25 S
Scaling SVD dimensions

» Singular values o; can be seen as weighting of the latent
dimensions, which determines their contribution to

MV, || =02 +...+ 02

» Weighting adjusted by power scaling of the singular values:

Uzxf = U’fal ... oPa,

» p = 1: normal SVD projection
» p = 0: dimension weights equalized
» p =2: more weight given to first latent dimensions

> Other weighting schemes possible (e.g. skip first dimensions)
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FEAGS
SVD projection in R

> (X.r <- 80 %*% V.r) # project into latent coordinates
> U.r %*), Sigma.r # same result
> scaleMargins(U.r, cols=fact$d[1:r]) # the wordspace way

> rownames(X.r) <- rownames(S0) # NB: keep row labels
> S0r <- U.r %x% Sigma.r %*% t(V.r)

> round(SOr, 3)

# compare with Sg: where are the differences?

# rank-2 matrix approx.

> round(X.r %*% t(V.r), 3) # same result

1= see example code for comparison against PCA with centering
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