Hands-on Distributional Semantics Part 1: Introduction

Stephanie Evert¹ & Gabriella Lapesa² with Alessandro Lenci³ and Marco Baroni⁴

¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
 ²University of Stuttgart, Germany
 ³University of Pisa, Italy
 ⁴University of Trento, Italy

http://wordspace.collocations.de/doku.php/course:esslli2021:start

Copyright © 2009–2022 Evert, Lapesa, Lenci & Baroni | Licensed under CC-by-sa version 3.0

1/61

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

DSM Tutorial – Part 1 wordspace.collocations.de

Goals of this course

- Introduce the basic concepts of distributional semantics (DS) and – at the same time – teach you to take your own steps into DS with the wordspace package for R
- 2. Show you what can be done with DS in two domains of interdisciplinary application, including hands-on exercises
 - Linguistic Theory
 - ★ Motivation: test theories, enlarge scope of investigation
 - * Challenge: operationalization
 - (theoretical concepts \rightarrow empirical properties)
 - Cognitive modeling
 - * Motivation: corpus data are behavioural data after all
 - ★ Challenge: continuous variables, large vocabularies
- 3. Equip you with the "coordinates" to navigate the current DS literature beyond the scope of this course

What is distributional semantics?

- A corpus-based approach to the representation of meaning based on a very simple intuition: distributional hypothesis
 similar context \iff similar meaning
- An empirical method that produces usage-based lexical entries for words, which to the computer look like this:
 - (10,0,0,0,0,100,40)
 - ► (-1.3, 1.4, 0.4, -0.2, 1.3, 2.7, -0.001)
- Closely related to neuronal word embeddings
- Maths behind it can be complicated
 - ... but you can apply DS to many research questions with existing software packages if you understand the basic concepts clearly

DSM Tutorial - Part 1

Beware of the black box problem!

Outline

Today's plan

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

Introduction

The distributional hypothesis Distributional semantic models DSM and semantic similarity Course Outline

Getting practical

Software and further information R as a (toy) laboratory

wordspace.collocations.de

Outline

Introduction

The distributional hypothesis

Distributional semantic models DSM and semantic similarity Course Outline

Getting practical

Software and further information R as a (toy) laboratory

Meaning & distribution

- "Die Bedeutung eines Wortes liegt in seinem Gebrauch."
 Ludwig Wittgenstein
 - \square meaning = use = distribution in language
- "You shall know a word by the company it keeps!"
 J. R. Firth (1957)
 Isolation = collocations = habitual word combinations
- Distributional hypothesis: difference of meaning correlates with difference of distribution (Zellig Harris 1954)
 res semantic distance
- "What people know when they say that they know a word is not how to recite its dictionary definition – they know how to use it [...] in everyday discourse." (Miller 1986)

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

wordspace.collocations.de

Introduction The distributional hypothesis

DSM Tutorial - Part 1

What is the meaning of "bardiwac"?

Can we infer meaning from usage?

- ► He handed her her glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- ▶ I dined off bread and cheese and this excellent bardiwac.
- The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.
- **bardiwac** is a heavy red alcoholic beverage made from grapes

All examples from British National Corpus (handpicked and slightly edited).

Introduction The distributional hypothesis

Word sketch of "cat"

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

Can we infer meaning from collocations (as Firth suggests)?

Cat British National Corpus freq = 5381

https://the.sketchengine.co.uk/

wordspace.collocations.de

7/61

object	of 964 2.0	and/or	1056 1.7	pp obj like-p	106 28.9	possessor	<u>91</u>	1.9	possession	<u>232</u>	4.7
skin	<u>9</u> 7.91	dog	<u>208</u> 8.49	grin	<u>11</u> 7.63	Schrödinger	<u>8</u>	10.87	cradle	<u>24</u> 9	9.91
diddle	<u>7</u> 7.85	cat	<u>68</u> 8.01	fight	<mark>9</mark> 4.62	witch	4	6.82	whisker	<mark>9</mark> 8	8.92
stroke	<u>10</u> 7.09	kitten	<u>13</u> 8.01	smile	<u>4</u> 4.24	gardener	4	6.0	paw	<u>5</u> 7	7.44
torture	5 6.57	fiddle	<mark>9</mark> 7.71	look	<u>11</u> 2.04	Henry	8	4.91	fur	<u>9</u> 7	7.14
feed	<u>22</u> 6.34	mouse	<u>29</u> 7.68			neighbour	5	4.28	tray	4 5	5.34
rain	<u>4</u> 6.3	monkey	<u>15</u> 7.55	pp_among-p	17 14.8				tail	<u>5</u> 4	4.91
chase	<u>9</u> 6.27	budgie	<u>4</u> 6.74	pigeon	<u>15</u> 8.66				tongue	<u>5</u> 4	1.89
rescue	<u>7</u> 6.15	rabbit	<u>12</u> 6.48						ear	<u>5</u>	4.0

subject	of 842 3.3	adj subject	of 142 2.6	pp obj	of-p 324 1.3	modifier	<u>1622</u>	1.2	modifies	<u>610</u> 0.5
purr	<u>7</u> 7.76	asleep	<u>4</u> 6.09	moral	<u>4</u> 7.06	pussy	<u>76</u>	10.42	flap	<u>16</u> 8.39
miaow	<u>5</u> 7.57	alive	<u>4</u> 5.06	breed	<u>6</u> 5.77	Cheshire	<u>45</u>	8.9	litter	<u>15</u> 8.15
mew	<u>4</u> 7.18	concerned	<u>4</u> 2.94	signal	<u>4</u> 3.89	stray	<u>25</u>	8.7	phobia	<u>5</u> 7.64
jump	<u>20</u> 6.95	black	<u>4</u> 2.36	sight	<u>4</u> 3.77	siamese	17	8.35	burglar	<u>8</u> 7.55
scratch	<u>8</u> 6.84	likely	<u>4</u> 1.96	species	<u>5</u> 3.36	tabby	17	8.35	faeces	<u>6</u> 7.47
leap	<u>10</u> 6.78			game	<mark>9</mark> 3.14	wild	<u>53</u>	7.94	assay	<u>10</u> 7.38
stalk	<u>4</u> 6.56			picture	<u>6</u> 2.99	pet	<u>31</u>	7.92	Hastings	<mark>7</mark> 6.91
react	<u>4</u> 5.33			death	<u>7</u> 2.71	tom	12	7.8	scan	<u>4</u> 6.59

Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

			ſ٩⊡	٩îþ	nlo		<u>م</u> ار
(knife)		51	20	84	0	3	0
(cat)	500	52	58	4	4	6	26
???	~ f\ 🗉	115	83	10	42	33	17
(boat)	مأهك	59	39	23	4	0	0
(cup)		98	14	6	2	1	0
(pig)	₀≀▣≀∟	12	17	3	2	9	27
(banana)	AA	11	2	2	0	18	0

A thought experiment: deciphering hieroglyphs

			ſ٩⊡	٩۴p	nl⊖	AA_{\Box}	<u>م</u> ا م
(knife)	A !	51	20	84	0	3	0
(cat)	500	52	58	4	4	6	26
7???	<u>ح</u> fo	115	83	10	42	33	17
(boat)	مأهك	59	39	23	4	0	0
(cup)		98	14	6	2	1	0
(pig)		12	17	3	2	9	27
(banana)	AA	11	2	2	0	18	0

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 1

wordspace.collocations.de 10/61 © Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 1

wordspace.collocations.de 10 / 61

Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

			ſ٩∟	٩٩p	nl₀	$\mathbb{N}_{\mathbb{Z}}$	<u>م</u> اح
(knife)		51	20	84	0	3	0
(cat)	D Ø	52	58	4	4	6	26
יייל	~ f\ 0	115	83	10	42	33	17
(boat)	مأهك	59	39	23	4	0	0
(cup)		98	14	6	2	1	0
pig)	₀≀ᢑ≀∟	12	17	3	2	9	27
(banana)	AA	11	2	2	0	18	0

Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

		▣⋴⊳≏	P۹⊡	٩٩p	nl⇔	\mathbb{N}_{\Box}	<u>م</u> ار
(knife)		51	20	84	0	3	0
(cat)		52	58	4	4	6	26
???	<u>ح</u> flo	115	83	10	42	33	17
(boat)	مأهك	59	39	23	4	0	0
(cup)		98	14	6	2	1	0
(pig)		12	17	3	2	9	27
(banana)	A	11	2	2	0	18	0

$$sim(= f$$
, $= 0.961$

English as seen by the computer ...

		get Iapa	see N⊡	use ≬î≬	hear ⊡∮⇔	eat ≬≬_	kill ⊸∮ഛ
knife	A	51	20	84	0	3	0
cat	5	52	58	4	4	6	26
dog	~ fo	115	83	10	42	33	17
boat		59	39	23	4	0	0
cup		98	14	6	2	1	0
pig	₀∢⊠≬∟	12	17	3	2	9	27
banana	A	11	2	2	0	18	0

DSM Tutorial – Part 1

0

20

40

60

get

verb-object counts from British National Corpus

wordspace.collocations.de 11 / 61

Geometric interpretation

- row vector x_{dog} describes usage of word *dog* in the corpus
- can be seen as coordinates of point in *n*-dimensional Euclidean space

get					
800	see	use	hear	eat	kill
51	20	84	0	3	0
52	58	4	4	6	26
115	83	10	42	33	17
59	39	23	4	0	0
98	14	6	2	1	0
12	17	3	2	9	27
11	2	2	0	18	0
	51 52 115 59 98 12	51 20 52 58 115 83 59 39 98 14 12 17	51 20 84 52 58 4 115 83 10 59 39 23 98 14 6 12 17 3	51 20 84 0 52 58 4 4 115 83 10 42 59 39 23 4 98 14 6 2 12 17 3 2	51 20 84 0 3 52 58 4 4 6 115 83 10 42 33 59 39 23 4 0 98 14 6 2 1 12 17 3 2 9

co-occurrence matrix M

The distributional hypothesis

Geometric interpretation

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

- row vector x_{dog} describes usage of word *dog* in the corpus can be seen as coordinates of point in *n*-dimensional
- Euclidean space illustrated for two
- dimensions: get and use \blacktriangleright **x**_{dog} = (115, 10)

Two dimensions of English V-Obj DSM 120 100 knife 8 nse 60 40 boat 20 dog cat 0

The distributional hypothesis

DSM Tutorial – Part 1

Geometric interpretation

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

Two dimensions of English V-Obj DSM ▶ similarity = spatial 120 proximity (Euclidean dist.) 100 location depends on knife frequency of noun 8 $(f_{\rm dog} \approx 2.7 \cdot f_{\rm cat})$ use 09 40 boat 20 cat 0 0 20 40 60 80 100 120 get

80

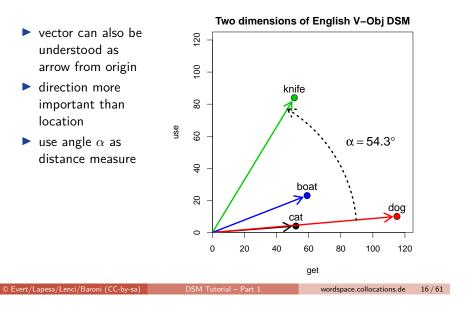
100

120

13/61

wordspace.collocations.de 12 / 61

Geometric interpretation



Geometric interpretation vector can also be understood as arrow from origin direction more

use

80

60

40

20

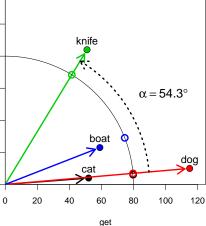
0

DSM Tutorial - Part

important than location ► use angle α as

distance measure
 or normalise length
 ||x_{dog}|| of arrow

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)



wordspace.collocations.de

16 / 61

Introduction Distributional semantic models

Outline

Introduction

The distributional hypothesis Distributional semantic models DSM and semantic similarity Course Outline

Getting practical

Software and further information R as a (toy) laboratory Introduction Distributional semantic models

General definition of DSMs

A distributional semantic model (DSM) is a scaled and/or transformed co-occurrence matrix \mathbf{M} , such that each row \mathbf{x} represents the distribution of a target term across contexts.

	get	see	use	hear	eat	kill
knife	0.027	-0.024	0.206	-0.022	-0.044	-0.042
cat	0.031	0.143	-0.243	-0.015	-0.009	0.131
dog	-0.026	0.021	-0.212	0.064	0.013	0.014
boat	-0.022	0.009	-0.044	-0.040	-0.074	-0.042
cup	-0.014	-0.173	-0.249	-0.099	-0.119	-0.042
pig	-0.069	0.094	-0.158	0.000	0.094	0.265
banana	0.047	-0.139	-0.104	-0.022	0.267	-0.042

DSM Tutorial – Part 1

Term = word, lemma, phrase, morpheme, word pair, ...

Nearest neighbours

DSM based on verb-object relations from BNC, reduced to 100 dim. with SVD

Neighbours of **trousers** (cosine angle):

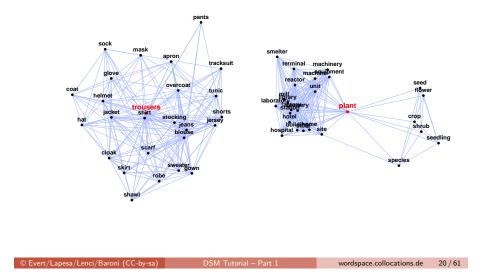
shirt (18.5), blouse (21.9), scarf (23.4), jeans (24.7), skirt (25.9), sock (26.2), shorts (26.3), jacket (27.8), glove (28.1), coat (28.8), cloak (28.9), hat (29.1), tunic (29.3), overcoat (29.4), pants (29.8), helmet (30.4), apron (30.5), robe (30.6), mask (30.8), tracksuit (31.0), jersey (31.6), shawl (31.6), ...

Neighbours of **rage** (cosine angle):

anger (28.5), fury (32.5), sadness (37.0), disgust (37.4), emotion (39.0), jealousy (40.0), grief (40.4), irritation (40.7), revulsion (40.7), scorn (40.7), panic (40.8), bitterness (41.6), resentment (41.8), indignation (41.9), excitement (42.0), hatred (42.5), envy (42.8), disappointment (42.9), ...

DSM Tutorial - Part 1

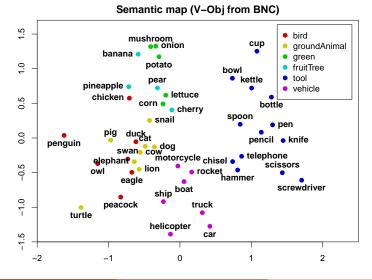
Nearest neighbours with similarity graph



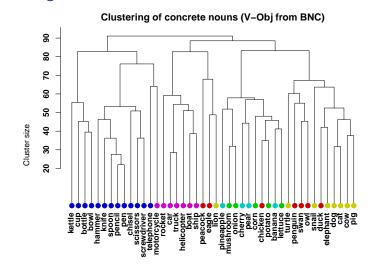
Introduction Distributional semantic models

Semantic maps

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)



Clustering



DSM Tut

Introduction

Distributional semantic models

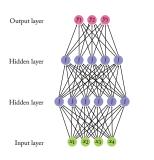
wordspace.collocations.de 19 / 61

DSM vector as sub-symbolic meaning representation

- ▶ feature vector for machine learning algorithm
- input for neural network
- such distributed representations are known as embeddings
- \bowtie embeddings \Rightarrow distributional

Computation in semantic space

- find meaningful subdimensions in DSM space (\rightarrow correlation)
- linear operations on vectors



(Goldberg 2017, Fig. 4.2)

(Mikolov et al. 2013, Fig. 2)

23/61

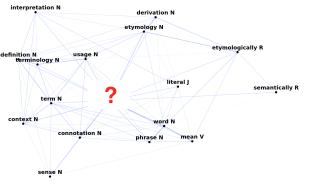
wordspace.collocations.de

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial - Part

Introduction DSM and semantic similarity

Inverse distributional semantics

Which word "bought" the same contexts as the ones displayed in this graph?



... look at the neighbors: is there one notion of similarity "to rule them all"?

Outline

Introduction

DSM and semantic similarity

Introduction

DSM and semantic similarity

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

R as a (toy) laboratory

DSM and semantic similarity Introduction

DSM Tutorial - Part 1

Distributional similarity as semantic similarity

- DSM similarity as a quantitative notion
 - if **a** is closer to **b** than to **c** in the distributional vector space, then a is more semantically similar to b than to c
- DSM similarity as a graded notion, differently from categorical nature of most theoretical accounts
- DSM similarity as the empirical correlate of a heterogeneous set of phenomena

... which we may want to tease apart!

DSM similarity is symmetric – cognition is not ... can we fix this?

DSM Tutorial – Part 1

wordspace.collocations.de 24 / 61

Characterizing DSM similarity

- DSMs are thought to represent taxonomic similarity
 - words that tend to occur in the same contexts
- Words that share many contexts share many properties (attributes) and are thus taxonomically/ontologically similar
 - synonyms (*rhino/rhinoceros*)
 - antonyms and values on a scale (good/bad)
 - co-hyponyms (rock/jazz)
 - hyper- and hyponyms (rock/basalt)
- ► Taxonomic similarity is seen as the fundamental semantic relation organising the vocabulary of a language, allowing categorization, generalization and inheritance...

Is distributional similarity just taxonomic?

Nearest DSM neighbors have different types of semantic relations.

car (BNC, L2/R2 span)

- van co-hyponym
- vehicle hyperonym
- truck co-hyponym
- motorcycle co-hyponym
- driver related entity
- motor part

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

- Iorry co-hyponym
- motorist related entity
- cavalier hyponym
- bike co-hyponym

car (BNC, L30/R30 span)

- drive function
- park typical action
- bonnet part
- windscreen part
- hatchback part
- headlight part
- jaguar hyponym
- garage location
- cavalier hyponym
- tyre part

http://clic.cimec.unitn.it/infomap-query/

wordspace.collocations.de 29 / 61

```
© Evert/Lapesa/Lenci/Baroni (CC-by-sa)
```

wordspace.collocations.de

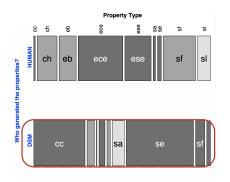
28/61

30 / 61

DSM and semantic similarity

Is distributional similarity just taxonomic? Manual annotation: what are the properties of car? Humans vs DSM

Introduction



Taxonomic category:

- cc (co-)hyponym truck ch hypernym vehicle
- Properties of entity:
- eb typical behaviour ece ext. component wheel ese surf. property smooth

Situationally associated:

- sa action park
- se other entity *traffic light*
- sf function drive
- sl location garage
- sp participant driver

Task: humans: given a word, generate properties; DSM), generate top 10 neighbors. Items: 44 concrete English nouns (Baroni & Lenci 2008).

DSM and semantic similarity

DSM similarities: terminological coordinates Attributional similarity vs. Semantic relatedness

- \blacktriangleright Attributional similarity (\leftarrow taxonomical) two words sharing a large number of salient features (attributes)
 - synonymy (car/automobile)
 - co-hyponymy (car/van/truck)
 - hyperonymy (car/vehicle)
 - ★ Problem: subset/superset, need ad-hoc measures (distributional inclusion cf. Lenci & Benotto (2012))
 - antonymy (hot/cold)
 - ★ Problem: they are the opposite of similar, and yet...
- Semantic relatedness (Budanitsky & Hirst 2006) two words semantically associated without necessarily being similar

DSM Tutorial - Part 1

- function (car/drive)
- meronymy (car/tyre)
- Iocation (car/road)
- attribute (car/fast)
 - Why similar in DSMs? They co-occur \rightarrow share contexts

Introduction

DSM similarities: terminological coordinates

Attributional vs. Relational Similarity

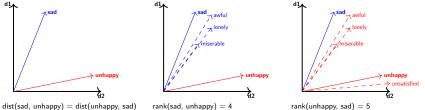
- - a large number of salient features (attributes
 - synonymy (car/automobile)
 - co-hyponymy (car/van/truck)
 - hyperonymy (car/vehicle)
- Relational similarity (Turney 2006) similar relation between pairs of words (analogy)
 - policeman: gun :: teacher: book
 - mason: stone :: carpenter: wood
 - traffic:street :: water:riverbed
 - ... textbook example of neural embeddings application

Introduction DSM and semantic similarity

Problem: symmetry in DSM similarity

The symmetry assumption does not fit all phenomena

Solution: neighbor rank can capture (potential) asymmetries



► Motivation: cognitive processes are notoriously asymmetric

- Advantage: rank makes similarity predictions comparable across models and is applicable to different distance measures
- Interpretation: rank controls for differences in density in the semantic space

DSM Tutorial - Part 1

Introduction Course Outline

Outline

Introduction

The distributional hypothesis Distributional semantic models DSM and semantic similarity Course Outline

Getting practical

Software and further information R as a (toy) laboratory

Introduction Course Outline

Day 1: Introduction Summing up what we learnt

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

- ► A DSM is a **matrix**. which contains
 - ... targets: rows
 - ... contexts: **columns**
 - ... co-occurrence scores (or fancier versions of co-occurrence) for target/context pairs: matrix cells
- The row corresponding to a target (vector) is the best approximation we have for it its meaning
 - ► Goal: make comparisons (recall the hieroglyphs)
 - \star Similarity as context overlap
- Geometric interpretation: vectors as coordinates in space
 - Similarity as distance
 - Neighbors reveal the semantic nuances a DSM is capturing

DSM Tutorial - Part 1

- Visualization: neighbor maps
- Neighbor rank as a way to get asymmetric similarity predictions

wordspace.collocations.de

33 / 61

Roadmap: First steps in distributional semantics

- Mathematical operations on the DSM vectors
- Computing distances/similarities
- Practice: building DSMs and exploring parameters

Day 3: Which meaning is a DSM capturing (if any?)

- Evaluation: conceptual coordinates
- Standard evaluation tasks: multiple choice, prediction of similarity ratings, clustering
- Narrowing down similarity: classifying semantic relations
- Practice: evaluation of selected tasks

Roadmap: Interdisciplinary applications

Day 4: DS beyond NLP – Linguistic theory

- Linguistic exploitation of distributional representations
- ► A textbook challenge for DSMs: polysemy
- Success stories: semantic compositionality (belown and above word level), morphological transparency, argument structure
- Issues: not all words have a (straightforward) DS meaning
- Practice: word sense disambiguation & modeling of morphological derivation

Day 5: DS beyond NLP – Cognitive modelling

- DSMs for cognitive modeling: general issues
- Free association norms as a window into the organization of the mental lexicon
- Predicting free associations with DSMs
- Practice: combine DSMs with first-order co-occurrence in the FAST free association task

DSM Tutorial – Part 1

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

1 wordspace.collocations.de

36/61

Getting practical Software and further information

Outline

Introduction

The distributional hypothesis Distributional semantic models DSM and semantic similarity Course Outline

Getting practical

Software and further information

R as a (toy) laboratory

Getting practical Software and further information

Some applications in computational linguistics

- Query expansion in information retrieval (Grefenstette 1994)
- Unsupervised part-of-speech induction (Schütze 1995)
- Word sense disambiguation (Schütze 1998; Rapp 2004b)
- Thesaurus compilation (Lin 1998; Rapp 2004a)
- Attachment disambiguation (Pantel & Lin 2000)
- Probabilistic language models (Bengio *et al.* 2003)
- Translation equivalents (Sahlgren & Karlgren 2005)
- Ontology & wordnet expansion (Pantel et al. 2009)
- Language change (Sagi et al. 2009; Hamilton et al. 2016)
- Multiword expressions (Kiela & Clark 2013)
- Analogies (Turney 2013; Gladkova et al. 2016)
- Sentiment analysis (Rothe & Schütze 2016; Yu et al. 2017)
- 📨 Input representation for neural networks & machine learning

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

wordspace.collocations.de 37 / 61

Software packages

Infomap NLP	С	classical LSA-sty	le DSM	
HiDEx	C++	re-implementatio	on of the HAL mode	Ι
		(Lund & Burges	,	
SemanticVectors	Java		ture based on random	ו
		indexing represer		
S-Space	Java	complex object-o	priented framework	
JoBimText	Java	UIMA / Hadoop	framework	
Gensim	Python	complex framew	ork, focus on paral-	-
		lelization and ou	t-of-core algorithms	
Vecto	Python	framework for co	unt & predict models	5
DISSECT	Python	user-friendly, des	signed for research or	ו
		compositional se	mantics	
wordspace	R	interactive resea	arch laboratory, but	t
		scales to real-life	e data sets	
text2vec	R	GloVe embeddin	gs & topic models	
	(click on package na	me to open Web page	
ert/Lapesa/Lenci/Baroni (CC-by-sa)	DSM	/ Tutorial – Part 1	wordspace.collocations.de	40 / 61

Further information

- ► Handouts & other materials available from wordspace wiki at http://wordspace.collocations.de/
 - is based on joint work with Marco Baroni and Alessandro Lenci
- ► Tutorial is open source (CC), and can be downloaded from http://r-forge.r-project.org/projects/wordspace/

Getting practical Software and further information

Further information

Review papers on distributional semantics:

Turney, Peter D. and Pantel, Patrick (2010). From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research, 37, 141-188. Erk, Katrin (2012). Vector Space Models of Word Meaning and Phrase Meaning: A Survey. Language and Linguistics Compass, 6-1, 635-653. Boleda, Gemma (2020). Distributional Semantics and Linguistic Theory. Annual Review of Linguistics, 6-1, 213–234.

We should be working on a textbook *Distributional Semantics* for *Synthesis Lectures on HLT* (Morgan & Claypool)

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

DSM Tutorial – Part 1

wordspace.collocations.de 41 / 61

Getting practical R as a (toy) laboratory

Outline

Getting practical

R as a (toy) laboratory

Prepare to get your hands dirty

- We will use the statistical programming environment R as a toy laboratory in this tutorial
 - but one that scales to real-life applications

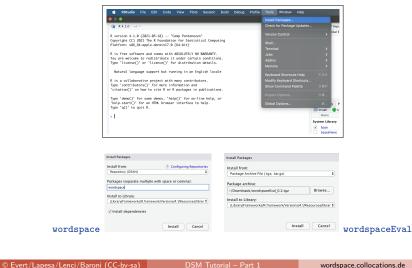
Software installation

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

- R version 4.0 or newer from http://www.r-project.org/
- RStudio from http://www.rstudio.com/
- R packages from CRAN (through RStudio menu)
 - sparsesvd, wordspace
 - recommended: e1071, rsparse, Rtsne, uwot
 - optional: tm, quanteda, data.table, wordcloud, shiny, spacyr, udpipe, coreNLP
- Get data sets, precompiled DSMs and wordspaceEval package (with some non-public data sets) from http://wordspace.collocations.de/doku.php/course:material

DSM Tutorial – Part 1

Prepare to get your hands dirty Installing wordspace and wordspaceEval in RStudio



Getting practical R as a (toy) laboratory

Prepare to get your hands dirty Setting up a working directory and RStudio project

Setting up a working directory and restudio project

- Create a separate directory (folder) for this course
 - subdirectory models for pre-compiled DSMs (large files)
 - subdirectory data for other data files
- Recommended: set up **RStudio project** for the course
 - click New Project (top right corner), then Existing Directory
 - choose the course directory you've just created
 - this will be set as your R working directory within the project!
 - vou can easily switch between different RStudio projects
- Alternatively: set working directory at start of session
 - e.g. setwd("~gabriella/Desktop/ESSLLI22")
- Work with **R** scripts rather than in interactive console
 - RStudio: add R Script from drop-down menu in top left corner
 - we provide example scripts for each hands-on session (+extras)

wordspace.collocations.de

44 / 61

Getting practical R as a (toy) laboratory

First steps in R

Start each session by loading the wordspace package.

> library(wordspace)

The package includes various example data sets, some of which should look familiar to you.

> DSM_	Hie	rogl	yphs	Matr	ix	
	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Term-term matrix

Term-term matrix records co-occurrence frequencies with feature terms for each target term

Term-context matrix

Term-context matrix records frequency of term in each individual context (e.g. sentence, document, Web page, encyclopaedia article)

Getting practical R as a (toy) laboratory

Playing with a larger model

Term-term matrix, dimensionality-reduced, built from Web texts for target words in the format *lemma_POS* (e.g. banana_N)

> DSM_Vectors

> View(DSM_Vectors)

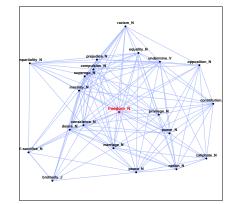
Let's inspect some nearest neighbors:

> nearest.neighbours(DSM_Vectors, "freedom_N", n=4)
 peace_N morality_N equality_N conscience_N
 30.13420 34.18397 34.23418 34.23894

etting practical R as a (toy) laboratory

Playing with a larger model

Or create a semantic map for a word we are interested in:



DSM Tut

... and with an even larger model

You can download several large pre-compiled DSMs from the course wiki, which represent different parameters of the co-occurrence matrix (\rightarrow part 2).

- e.g. WP500_DepFilter_Lemma.rda
- download this file to subdirectory models
- > load("models/WP500_DepFilter_Lemma.rda", verbose=TRUE)
 Loading objects:
 WP500_DepFilter_Lemma
- > model <- WP500_DepFilter_Lemma # assign to a shorter name</pre>

Now try the semantic map again:

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

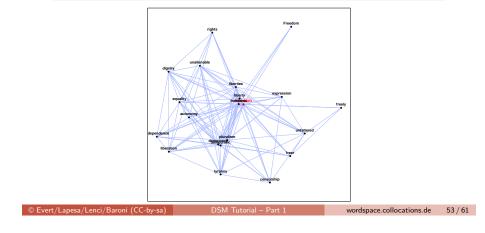
wordspace.collocations.de

52/61

Getting practical R as a (toy) laboratory

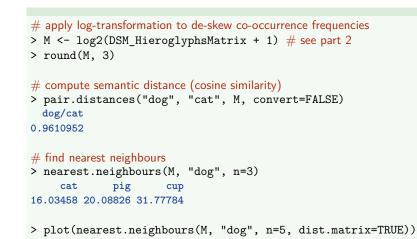
Freedom in a neural embedding model: word2vec

- > load("GoogleNews300_wf200k.rda", verbose=TRUE)
- > embeddings <- GoogleNews300_wf200k.rda</pre>



Getting practical R as a (toy) laboratory

Bonus: Recreate the hieroglyphs example



Explorations

While you wait for part 2,

you can explore some DSM similarity networks online:

https://corpora.linguistik.uni-erlangen.de/shiny/wordspace/

Getting practical R as a (toy) laboratory

built in R with wordspace and shiny

References I

- Baroni, Marco and Lenci, Alessandro (2008). Concepts and properties in word spaces. *Italian Journal of Linguistics*, **20**(1).
- Bengio, Yoshua; Ducharme, Réjean; Vincent, Pascal; Jauvin, Christian (2003). A neural probabilistic language model. *Journal of Machine Learning Research*, 3, 1137–1155.
- Boleda, Gemma (2020). Distributional semantics and linguistic theory. *Annual Review* of *Linguistics*, **6**(1), 213–234.
- Budanitsky, Alexander and Hirst, Graeme (2006). Evaluating WordNet-based measures of lexical semantic relatedness. Computational Linguistics, 32(1), 13–47.
- Erk, Katrin (2012). Vector space models of word meaning and phrase meaning: A survey. Language and Linguistics Compass, **6**(10), 635–653.
- Firth, J. R. (1957). A synopsis of linguistic theory 1930–55. In Studies in linguistic analysis, pages 1–32. The Philological Society, Oxford.
- Gladkova, Anna; Drozd, Aleksandr; Matsuoka, Satoshi (2016). Analogy-based detection of morphological and semantic relations with word embeddings: what works and what doesn't. In *Proceedings of the NAACL Student Research Workshop*, pages 8–15, San Diego, California.

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

Part 1 wordspace

wordspace.collocations.de 56 / 61

Getting practical R as a (toy) laboratory

References III

- Lenci, Alessandro and Benotto, Giulia (2012). Identifying hypernyms in distributional semantic spaces. In *SEM 2012: The First Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pages 75–79, Montréal, Canada. Association for Computational Linguistics.
- Lin, Dekang (1998). Automatic retrieval and clustering of similar words. In Proceedings of the 17th International Conference on Computational Linguistics (COLING-ACL 1998), pages 768–774, Montreal, Canada.
- Lund, Kevin and Burgess, Curt (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. *Behavior Research Methods, Instruments, & Computers*, 28(2), 203–208.
- Mikolov, Tomas; Yih, Wen-tau; Zweig, Geoffrey (2013). Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA.
- Miller, George A. (1986). Dictionaries in the mind. *Language and Cognitive Processes*, **1**, 171–185.

References II

- Goldberg, Yoav (2017). Neural Network Methods for Natural Language Processing. Number 37 in Synthesis Lectures on Human Language Technologies. Morgan & Claypool.
- Grefenstette, Gregory (1994). *Explorations in Automatic Thesaurus Discovery*, volume 278 of *Kluwer International Series in Engineering and Computer Science*. Springer, Berlin, New York.
- Hamilton, William L.; Leskovec, Jure; Jurafsky, Dan (2016). Diachronic word embeddings reveal statistical laws of semantic change. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1489–1501, Berlin, Germany.

Harris, Zellig (1954). Distributional structure. Word, 10(23), 146–162.

Kiela, Douwe and Clark, Stephen (2013). Detecting compositionality of multi-word expressions using nearest neighbours in vector space models. In *Proceedings of the* 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP 2013), pages 1427–1432, Seattle, WA.

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 1

wordspace.collocations.de 57 / 61

tting practical R as a (toy) laboratory

References IV

- Pantel, Patrick and Lin, Dekang (2000). An unsupervised approach to prepositional phrase attachment using contextually similar words. In *Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics*, Hongkong, China.
- Pantel, Patrick; Crestan, Eric; Borkovsky, Arkady; Popescu, Ana-Maria; Vyas, Vishnu (2009). Web-scale distributional similarity and entity set expansion. In *Proceedings* of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 938–947, Singapore.
- Rapp, Reinhard (2004a). A freely available automatically generated thesaurus of related words. In Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC 2004), pages 395–398.
- Rapp, Reinhard (2004b). A practical solution to the problem of automatic word sense induction. In *Proceedings of the ACL-2004 Interactive Posters and Demonstrations Sessions*, pages 194–197, Barcelona, Spain. Association for Computational Linguistics.
- Rothe, Sascha and Schütze, Hinrich (2016). Word embedding calculus in meaningful ultradense subspaces. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 512–517, Berlin, Germany.

References V

- Sagi, Eyal; Kaufmann, Stefan; Clark, Brady (2009). Semantic density analysis: Comparing word meaning across time and phonetic space. In *Proceedings of the Workshop on Geometrical Models of Natural Language Semantics (GEMS)*, pages 104–111, Athens, Greece.
- Sahlgren, Magnus and Karlgren, Jussi (2005). Automatic bilingual lexicon acquisition using random indexing of parallel corpora. *Natural Language Engineering*, **11**, 327–341.
- Schütze, Hinrich (1995). Distributional part-of-speech tagging. In Proceedings of the 7th Conference of the European Chapter of the Association for Computational Linguistics (EACL 1995), pages 141–148.
- Schütze, Hinrich (1998). Automatic word sense discrimination. Computational Linguistics, 24(1), 97–123.
- Turney, Peter D. (2006). Similarity of semantic relations. *Computational Linguistics*, **32**(3), 379–416.
- Turney, Peter D. (2013). Distributional semantics beyond words: Supervised learning of analogy and paraphrase. *Transactions of the Association for Computational Linguistics*, 1, 353–366.
- Turney, Peter D. and Pantel, Patrick (2010). From frequency to meaning: Vector space models of semantics. *Journal of Artificial Intelligence Research*, **37**, 141–188.

DSM Tutorial – Part 1

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

wordspace.collocations.de

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

60/61

References VI

DSM Tutorial – Part 1

wordspace.collocations.de 61 / 61

Yu, Liang-Chih; Wang, Jin; Lai, K. Robert; Zhang, Xuejie (2017). Refining word embeddings for sentiment analysis. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 534–539, Copenhagen, Denmark.