Hands-on Distributional Semantics Part 2: The parameters of a DSM

Stephanie Evert¹ & Gabriella Lapesa² with Alessandro Lenci³ and Marco Baroni⁴

¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
 ²University of Stuttgart, Germany
 ³University of Pisa, Italy
 ⁴University of Trento, Italy

http://wordspace.collocations.de/doku.php/course:esslli2021:start

Copyright © 2009–2022 Evert, Lapesa, Lenci & Baroni | Licensed under CC-by-sa version 3.0

1/87

3 / 87

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

t 2 wordspace.collocations.de

DSM parameters

General definition of DSMs

A distributional semantic model (DSM) is a scaled and/or transformed co-occurrence matrix \mathbf{M} , such that each row \mathbf{x} represents the distribution of a target term across contexts.

	get	see	use	hear	eat	kill
knife	0.027	-0.024	0.206	-0.022	-0.044	-0.042
cat	0.031	0.143	-0.243	-0.015	-0.009	0.131
dog	-0.026	0.021	-0.212	0.064	0.013	0.014
boat	-0.022	0.009	-0.044	-0.040	-0.074	-0.042
cup	-0.014	-0.173	-0.249	-0.099	-0.119	-0.042
pig	-0.069	0.094	-0.158	0.000	0.094	0.265
banana	0.047	-0.139	-0.104	-0.022	0.267	-0.042

Term = word, lemma, phrase, morpheme, word pair, ...

Outline

DSM parameters

A taxonomy of DSM parameters Context type & size Feature scaling Measuring distance Dimensionality reduction

Building a DSM

Sparse matrices Example: a verb-object DSM

Appendix

Taxonomy examples Three famous DSMs in detail

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 2

wordspace.collocations.de 2 / 87

OSM parameters

General definition of DSMs

Mathematical notation:

- ▶ $k \times n$ co-occurrence matrix $\mathbf{M} \in \mathbb{R}^{k \times n}$ (example: 7 × 6)
 - k rows = target terms
 - n columns = features or other dimensions
 - $\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & & \vdots \\ m_{k1} & m_{k2} & \cdots & m_{kn} \end{bmatrix}$
- ▶ distribution vector $\mathbf{m}_i = i$ -th row of \mathbf{M} , e.g. $\mathbf{m}_3 = \mathbf{m}_{dog} \in \mathbb{R}^n$
- components $\mathbf{m}_i = (m_{i1}, m_{i2}, \dots, m_{in})$ = features of *i*-th term:

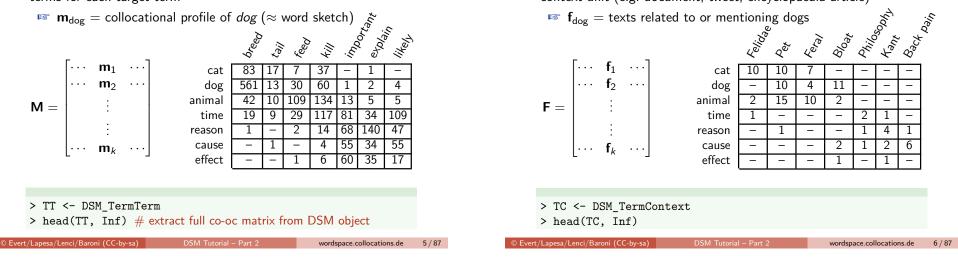
 $\textbf{m}_3 = (-0.026, 0.021, -0.212, 0.064, 0.013, 0.014)$

 $=(m_{31}, m_{32}, m_{33}, m_{34}, m_{35}, m_{36})$

DSM parameters

Term-term matrix

Term-term matrix records co-occurrence frequencies with feature terms for each target term



DSM parameters A taxonomy of DSM parameters

Outline

DSM parameters

A taxonomy of DSM parameters

Context type & size Feature scaling Measuring distance Dimensionality reduction

Building a DSM

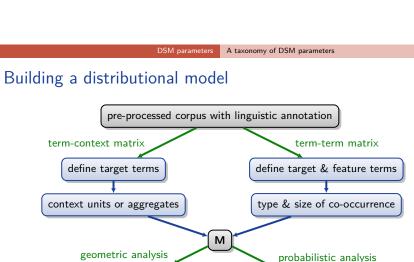
Sparse matrices Example: a verb-object DSM

Appendix

Taxonomy examples Three famous DSMs in detail

Term-context matrix

Term-context matrix records frequency of term in each individual context unit (e.g. document, tweet, encyclopaedia article)



DSM Tutorial – Part 2

similarity/distance measure + normalization

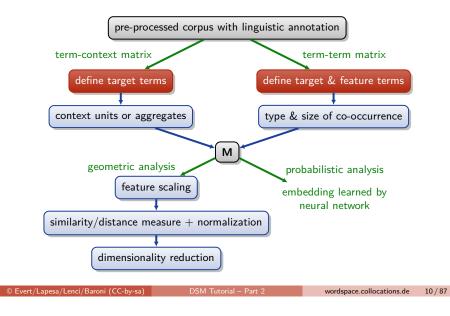
dimensionality reduction

feature scaling

9 / 87

embedding learned by neural network

Building a distributional model



Definition of target and feature terms

- Choice of linguistic unit (targets \neq features)
 - words
 - bigrams, trigrams, ...
 - multiword units, named entities, phrases,
 - morphemes
 - word pairs (
 malogy tasks)
- ► Mapping to target/feature terms (→ linguistic annotation)
 - word forms (minimally requires tokenisation)
 - ▶ often lemmatisation or stemming to reduce data sparseness: go, goes, went, gone, going → go
 - POS disambiguation (*light*/N vs. *light*/A vs. *light*/V)

DSM Tutorial - Part 2

- ▶ word sense disambiguation (*bank*_{river} vs. *bank*_{finance})
- abstraction: POS tags (or n-grams of POS tags) as features
- ☞ What is the effect of these choices?

DSM parameters A taxonomy of DSM parameters

Effects of term mapping

Nearest neighbours of *walk* (BNC)

word forms	lemmatised $+$ POS
stroll	► hurry
walking	► stroll
walked	► stride
► go	► trudge
path	► amble
drive	wander
► ride	walk (noun)
wander	walking
sprinted	retrace
sauntered	scuttle
	http://clic.cimec.unitn.it/infomap-query

DSM parameters A taxonomy of DSM parameters

Effects of term mapping

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

Nearest neighbours of *arrivare* (Repubblica)

word forms	lemmatised $+$ POS
► giungere	► giungere
raggiungere	aspettare
arrivi	attendere
raggiungimento	arrivo (noun)
raggiunto	ricevere
trovare	accontentare
raggiunge	approdare
arrivasse	pervenire
arriverà	venire
concludere	piombare

http://clic.cimec.unitn.it/infomap-query/

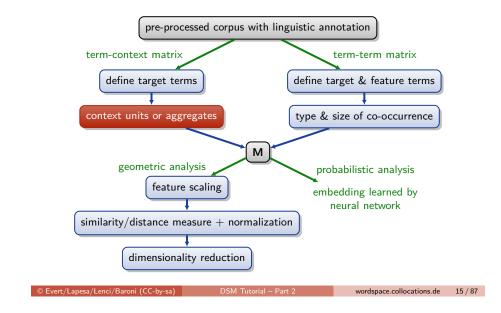
wordspace.collocations.de 11 / 87

Selection of target and feature terms

- ▶ 762,424 distinct word forms in BNC / 605,910 lemmata
- ► large Web corpora have > 10 million distinct word forms
- Iow-frequency targets (and features) are not reliable ("noisy")
- Frequency-based selection
 - corpus frequency $f \ge F_{\min}$ or n_w most frequent terms
 - ▶ sometimes upper threshold for features: $F_{\min} \leq f \leq F_{\max}$
- Relevance-based selection of features
 - criterion from information retrieval: document frequency df (high df → uninformative / low df → too sparse to be useful)
 - ▶ alternatives: entropy H or chi-squared statistic X^2
- Other criteria
 - ▶ POS-based filter: no function words, only verbs, nouns,
 - general dictionary, words required for particular task,

	© Evert/Lapesa/Lenci/Baroni (CC-by-sa)	DSM Tutorial – Part 2	
--	--	-----------------------	--

Building a distributional model



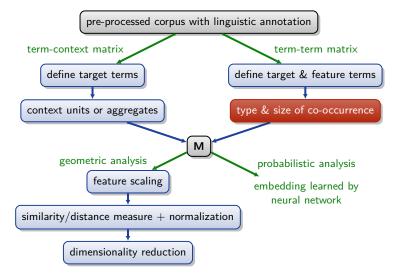
DSM parameters Context type & size

Term-context matrix: choice of context unit

- Features are usually tokens of the selected context unit, i.e. individual instances of a
 - document, novel, Wikipedia article, Web page, ...
 - paragraph, sentence, tweet, ...
 - "co-occurrence" f_{ij} = frequency of term *i* in context token *j*
- Similar context tokens can be aggregated, e.g.
 - feature = cluster of near-duplicate documents
 - feature = syntactic structure of sentence (ignoring content)
 - feature = all tweets from same author ("supertweet")
 - f_{ii} = pooled frequency count for aggregate j
- Generalization: context types
 - e.g. pattern of POS tags around target word
 - e.g. subcategorisation pattern of target verb

DSM parameters Context type & size

Building a distributional model



DSM Tutorial – Part 2

16/87

wordspace.collocations.de 14 / 87

Term-term matrix: definition of co-occurrence context

- Different types of co-occurrence (Evert 2008)
 - surface context (word or character window)
 - textual context (non-overlapping segments)
 - syntactic context (dependency relations)
 - from research into collocations
- Context size
 - ► small context (few words, syntactic relation) → more specific
 - ▶ large context (many words, entire document) → more general
- Different roles of co-occurrence context
 - ▶ unstructured context → acts as a filter for counts
 - ► structured context → subcategorizes feature terms
- What effects do you expect from these choices?

Surface context

Context term occurs within a span of *k* words around target.

The silhouette of the sun beyond a wide-open bay on the lake; the sun still glitters although evening has arrived in Kuhmo. It's midsummer; the living room has its instruments and other objects in each of its corners. [L3/R3 span, k = 6]

Parameters:

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

- span size (in words or characters)
- symmetric vs. one-sided span
- uniform or "triangular" (distance-based) weighting (don't!)

DSM Tutorial – Part 2

DSM parameters Context type & size

spans clamped to sentences or other textual units?

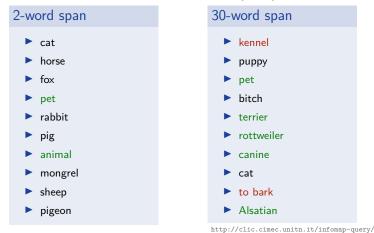
DSM parameters Context type & size

DSM Tutorial - Part 2

Effect of span size

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

Nearest neighbours of *dog* (BNC)



Textual context

Context term is in the same linguistic unit as target.

The silhouette of the sun beyond a wide-open bay on the lake; the sun still glitters although evening has arrived in Kuhmo. It's midsummer; the living room has its instruments and other objects in each of its corners.

Parameters:

- choice of linguistic unit
 - sentence
 - paragraph
 - turn in a conversation
 - Web page
 - tweet

similar to large surface spans, but more self-contained

wordspace.collocations.de

18 / 87

wordspace.collocations.de

Syntactic context

Context term is linked to target by a syntactic dependency (e.g. subject, modifier, ...).

The silhouette of the sun beyond a wide-open bay on the lake; the sun still glitters although evening has arrived in Kuhmo. It's midsummer; the living room has its instruments and other objects in each of its corners.

Parameters:

- types of syntactic dependency (Padó & Lapata 2007)
- maximal length of dependency path (1 for direct relation)
- homogeneous data (e.g. only verb-object) vs. heterogeneous data (e.g. all children and parents of the verb)

"Knowledge pattern" context

Context term is linked to target by a lexico-syntactic pattern (text mining, cf. Hearst 1992, Pantel & Pennacchiotti 2008, etc.).

In Provence, Van Gogh painted with bright colors such as red and yellow. These colors produce incredible effects on anybody looking at his paintings.

Parameters:

- inventory of lexical patterns
 - lots of research to identify semantically interesting patterns (cf. Almuhareb & Poesio 2004, Veale & Hao 2008, etc.)
- ► fixed vs. flexible patterns
 - patterns are mined from large corpora and automatically generalised (optional elements, POS tags or semantic classes)

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)	DSM Tutorial – Part 2	wordspace.collocations.de 22 / 87	© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 2 wordspace.collocations.de 23
D:	SM parameters Context type & size		DSM parameters Context type & size
Comparison of co-occ	urrence contexts		Structured vs. unstructured context
Contexts range from ge	neral/implict to specific/ex	plicit:	
	, ,		
	features a	re	
textual / large	span from same topic	domain	 In unstructered models, context specification acts as a filter determines whether context token counts as co-occurrence
small span	collocatio	าร	e.g. must be linked by any direct syntactic dependency relation
syntactic	attribute	5	In structured models, feature terms are subtyped
(single relation)) (focus on as	pect)	 depending on their position in the context e.g. left vs. right context, type of syntactic relation, etc.
knowledge patt	ern propertie	S	

DSM parameters Context type & size

Structured vs. unstructured surface context

A dog bites a man. The man's dog bites a dog. A dog bites a man.

unstructured	bite
dog	4
man	3

➡ data are less sparse (L/R context aggregated)

A dog bites a man. The man's dog bites a dog. A dog bites a man.

structured	bite-L	bite-R
dog	1	3
man	2	1

more sensitive to semantic distinctions

Building a distributional model

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 2 wordspace.collocations.de 26/87

DSM parameters Feature scaling



DSM parameters Context type & size

Structured vs. unstructured dependency context

A dog bites a man. The man's dog bites a dog. A dog bites a man.

unstructured	bite
dog	4
man	2

→ data are less sparse (all syntactic relations aggregated)

A dog bites a man. The man's dog bites a dog. A dog bites a man.

structured	bite-subj	bite-obj
dog	3	1
man	0	2

more sensitive to semantic distinctions

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 2

DSM parameters Feature scaling

Marginal and expected frequencies

Matrix of observed co-occurrence frequencies not sufficient

target	feature	0	R	С	E
dog dog	small domesticated		/	490,580 918	134.34 0.25

- Notation
 - ► *O* = observed co-occurrence frequency
 - R = overall frequency of target term = row marginal frequency
 - C = overall frequency of feature = column marginal frequency
 - $N = \text{sample size} \approx \text{size of corpus}$
- **Expected** co-occurrence **frequency** (cf. Evert 2008)

$$E = rac{R \cdot C}{N} \quad \longleftrightarrow \quad O$$

wordspace.collocations.de 27 / 87

Obtaining marginal frequencies (Evert 2008)

- Term-document matrix
 - R = frequency of target term in corpus
 - ► *C* = size of document (# tokens)
 - ► *N* = corpus size

Syntactic co-occurrence

- ▶ # of dependency instances in which target/feature participates
- ► *N* = total number of dependency instances
- ▶ N, R, C can be computed from full co-occurrence matrix **M**
- ► Textual co-occurrence
 - *R*, *C*, *O* are "document" frequencies, i.e. number of context units in which target, feature or combination occurs
 - N = total # of context units

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)	DSM Tutorial – Part 2	wordspace.collocations.de	30 / 87

Obtaining marginal frequencies (Evert 2008)

- Surface co-occurrence
 - it is quite tricky to obtain fully consistent counts (Evert 2004)
 - recommended: correct E for span size $k (= \# \text{ tokens in span})^1$

$$E = k \cdot \frac{R \cdot C}{N}$$

with R, C = individual corpus frequencies and N = corpus size

- ► can also be implemented by pre-multiplying R' = k · R (IST all pre-compiled surface DSMs in the course)
- ► alternatively, compute marginals and sample size by summing over full co-occurrence matrix (→ E as above, but inflated N)

¹NB: shifted PPMI (Levy & Goldberg 2014) corresponds to a post-hoc application of the span size adjustment. It performs worse than PPMI, but paper suggests they already approximate correct *E* by summing over matrix *M*. © Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 2 wordspace.collocations.de 31/87

DSM parameters Feature scaling

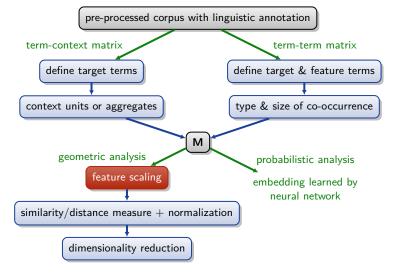
Marginal frequencies in wordspace

DSM objects in wordspace (class dsm) include marginal frequencies as well as counts of nonzero cells for rows and columns.

•	TT\$row	s	
	term	f	nnzero
1	cat	22007	5
2	dog	50807	7
3	animal	77053	7
4	time	1156693	7
5	reason	95047	6
6	cause	54739	5
7	effect	133102	6
>	TT\$col	S	
>	TT\$glo	bals\$N	
[1] 19990	2178	
>	TT\$M #	≠ the full	co-occu

DSM parameters Feature scaling

Building a distributional model



DSM Tutorial – Part 2

DSM parameters Feature scaling

OSM parameters Feature scaling

Feature scaling

- M is often dominated by few very large entries
 (→ highly skewed frequency distribution due to Zipf's law)
- Logarithmic scaling: O' = log(O + 1)
 (cf. Weber-Fechner law for human perception)
- Statistical association measures (Evert 2004, 2008) take frequency of target term and feature into account
 - usually based on comparison of observed and expected co-occurrence frequency
 - measures differ in how they balance O and E

Simple association measures

- pointwise Mutual Information (MI)
- ► local MI

$$\mathsf{local}\mathsf{-MI} = O \cdot \mathsf{MI} = O \cdot \mathsf{log}_2 \frac{O}{E}$$

 $\mathsf{MI} = \log_2 \frac{O}{F}$

t-score

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

+ _	O - E
ι —	\sqrt{O}

target	feature	0	Ε	MI	local-MI	t-score	
dog	small	855	134.34	2.67	2282.88	24.64	
dog	domesticated	29	0.25	6.85	198.76	5.34	
dog	sgjkj	1	0.00027	11.85	11.85	1.00	

DSM parameters Feature scaling

Other association measures

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

▶ simple log-likelihood (\approx local-MI)

$$G^{2} = \pm 2 \cdot \left(O \cdot \log_{2} \frac{O}{E} - (O - E) \right)$$

- with positive sign for O > E and negative sign for O < E
- Dice coefficient

$$\mathsf{Dice} = \frac{2O}{R+C}$$

- Many other association measures (AMs) available, often based on full contingency tables (see Evert 2008)
 - http://www.collocations.de/
 - http://sigil.r-forge.r-project.org/

DSM parameters Feature scaling

Applying association scores in wordspace

<pre>> options(digits=3) # print fractional values with limited precision > dsm.score(TT, score="MI", sparse=FALSE, matrix=TRUE)</pre>										
	breed	tail	feed	kill	important	explain	likely			
cat	6.21	4.568	3.129	2.801	-Inf	0.0182	-Inf			
dog	7.78	3.081	3.922	2.323	-3.774	-1.1888	-0.4958			
animal	3.50	2.132	4.747	2.832	-0.674	-0.4677	-0.0966			
time	-1.65	-2.236	-0.729	-1.097	-1.728	-1.2382	0.6392			
reason	-2.30	-Inf	-1.982	-0.388	1.472	4.0368	2.8860			
cause	-Inf	-0.834	-Inf	-2.177	1.900	2.8329	4.0691			
effect	-Inf	-2.116	-2.468	-2.459	0.791	1.6312	0.9221			

- sparseness of matrix representation is lost (try with TC!)
- \bowtie cells with score $x = -\infty$ are inconvenient
- distribution of scores may be even more skewed than co-occurrence frequencies themselves (esp. for G^2)

wordspace.collocations.de

34 / 87

36 / 87

wordspace.collocations.de

DSM parameters Feature scaling

Sparse association measures

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

Sparse association scores are cut off at zero, i.e.

$$f(x) = \begin{cases} x & x > 0 \\ 0 & x \le 0 \end{cases}$$

- ► Also known as "positive" scores
 - ▶ PPMI = positive pointwise MI (e.g. Bullinaria & Levy 2007)
 - wordspace computes sparse AMs by default \rightarrow "MI" = PPMI
- Preserves sparseness if $x \le 0$ for all empty cells (O = 0)
 - sparseness may even increase: cells with x < 0 become empty
- Further thinning may be beneficial (Polajnar & Clark 2014)
 - apply shifted cutoff threshold $x > \theta$ (Levy *et al.* 2015)
 - ► keep only *k* top-scoring features for each target

Score transformations

An additional scale transformation can be applied in order to de-skew association scores:

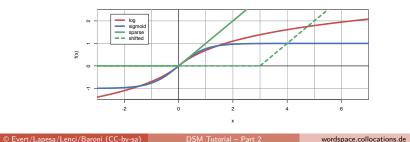
signed logarithmic transformation

$$f(x) = \pm \log(|x| + 1)$$

sigmoid transformation as soft binarization

 $f(x) = \tanh x$

sparse AM as (shifted) cutoff transformation (aka. ReLU)



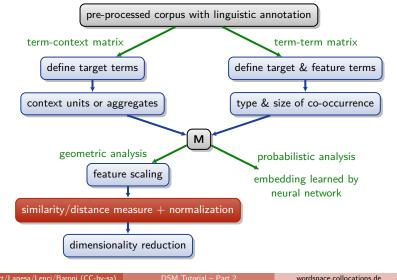
DSM parameters Feature scaling

Association scores & transformations in wordspace

> dsm.	score(TT,	score="M	I", matrix	=TRUE)	# PPMI		
	breed tail	feed kill	important	explain	likely		
cat	6.21 4.57	3.13 2.80	0.000	0.0182	0.000		
dog	7.78 3.08	3.92 2.32	0.000	0.0000	0.000		
animal	3.50 2.13	4.75 2.83	0.000	0.0000	0.000		
time	0.00 0.00	0.00 0.00	0.000	0.0000	0.639		
reason	0.00 0.00	0.00 0.00	1.472	4.0368	2.886		
cause	0.00 0.00	0.00 0.00	1.900	2.8329	4.069		
effect	0.00 0.00	0.00 0.00	0.791	1.6312	0.922		
> dsm.	score(TT,	score="s	imple-ll",	matrix	=TRUE)		
> dsm.	score(TT,	score="s	imple-ll",	transf	="log", mat:	rix=T)	
# logar	ithmic co-o	ccurrence fr	equency		U		
<pre># logarithmic co-occurrence frequency > dsm.score(TT, score="freq", transform="log", matrix=T)</pre>							
# now	try other pa	rameter co	mbinations				
				lahle nara	ameter settings		
·	. Beefe π		age for avail		inicici settings		
	ci/Baroni (CC-by-:						

DSM parameters Measuring distance

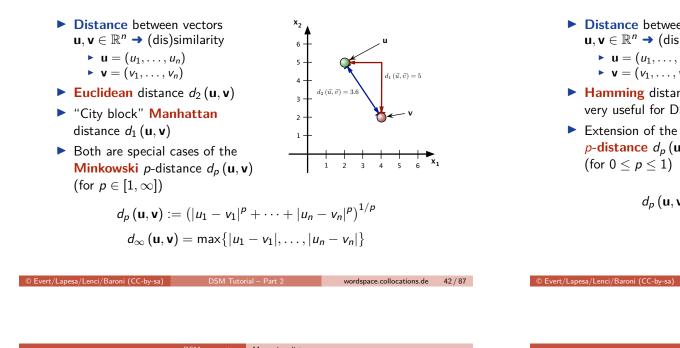
Building a distributional model



wordspace.collocations.de

38 / 87

Geometric distance = metric



• $\mathbf{u} = (u_1, \ldots, u_n)$ $\mathbf{v} = (v_1, \ldots, v_n)$ $d_1(\vec{u}, \vec{v}) = 5$ **Hamming** distance $d_0(\mathbf{u}, \mathbf{v})$ not $d_2(\vec{u}, \vec{v}) =$ very useful for DSM Extension of the Minkowski *p*-distance $d_p(\mathbf{u}, \mathbf{v})$ (for $0 \leq p \leq 1$) $d_p(\mathbf{u},\mathbf{v}) := |u_1 - v_1|^p + \cdots + |u_n - v_n|^p$ $d_0(\mathbf{u},\mathbf{v}) = \#\{i \mid u_i \neq v_i\}$

DSM parameters Measuring distance

Computing distances

Preparation: store "scored" matrix in DSM object

> TT <- dsm.score(TT, score="freq", transform="log")</pre>

Compute distances between individual term pairs ...

```
> pair.distances(c("cat","cause"), c("animal","effect"),
                 TT, method="euclidean")
  cat/animal cause/effect
       4.16
                1.53
```

... or full distance matrix.

```
> dist.matrix(TT, method="euclidean")
```

> dist.matrix(TT, method="minkowski", p=4)

DSM parameters Measuring distance

Distance and vector length = norm

► Intuitively, distance $d(\mathbf{u}, \mathbf{v})$ should correspond to length $\|\mathbf{u} - \mathbf{v}\|$ of displacement vector $\mathbf{u} - \mathbf{v}$

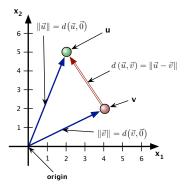
Geometric distance = metric

Distance between vectors

 $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n \rightarrow (dis)similarity$

- \blacktriangleright $d(\mathbf{u}, \mathbf{v})$ is a metric
- \blacktriangleright $\|\mathbf{u} \mathbf{v}\|$ is a norm
- ▶ $||\mathbf{u}|| = d(\mathbf{u}, \mathbf{0})$
- Any norm-induced metric is translation-invariant
- Minkowski p-norm with $d_{p}\left(\mathbf{u},\mathbf{v}\right)=\|\mathbf{u}-\mathbf{v}\|_{p}$

```
\|\mathbf{u}\|_{p} := (|u_{1}|^{p} + \dots + |u_{n}|^{p})^{1/p} for 1 \le p
\|\mathbf{u}\|_p := |u_1|^p + \dots + |u_n|^p for 0 \le p < 1 (an F-norm)
\|\mathbf{u}\|_0 = \#\{i \mid u_i \neq 0\}
```



wordspace.collocations.de

43 / 87

 $\|\mathbf{u}\|_{\infty} = \max\{|u_1|, \ldots, |u_n|\}$

Normalisation of row vectors

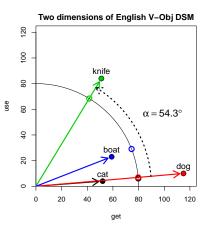
- Part 1: geometric distances only meaningful for vectors of the same length ||x||
- ► Normalize by scalar division:

$$\mathbf{x}' = \frac{1}{\|\mathbf{x}\|} \cdot \mathbf{x} = \left(\frac{x_1}{\|\mathbf{x}\|}, \frac{x_2}{\|\mathbf{x}\|}, \ldots\right)$$

with $\|\mathbf{x}'\| = 1$

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

- Norm must be compatible with distance measure!
- Special case: scale x ≥ 0 to stochastic vector with
 - $\|\mathbf{x}\|_1 = |x_1| + \cdots + |x_n|$
 - → probabilistic interpretation



wordspace.collocations.de

46 / 87

cat	dog a	nimal ti	me reaso	a causo	e effect	
6.90	0	8.82 10.				
> TT <	- dsm.sc	core(TT. s	score="f	rea". '	transform=	"log".
				-	thod="eucl	-
> moreN	orma (TT			· ·	# all = 1 n	-
		•				000
> aist		(TT, metho				
	cat	dog animal	time r	eason ca	ause effect	
cat	0.000 0.	224 0.473	0.782	1.121 1	.239 1.161	
dog	0.224 0.	000 0.398	0.698	1.065 1	.179 1.113	
animal	0.473 0.	398 0.000	0.426	0.841 0	.971 0.860	
	0.782 0.	698 0.426	0.000	0.475 0	.585 0.502	
time	1.121 1.	065 0.841	0.475	0.000 0	.277 0.198	
time reason					.277 0.198 .000 0.224	

DSM parameters Measuring distance

DSM Tutorial – Part

Distance measures for non-negative vectors

Information theory: Kullback-Leibler (KL) divergence for stochastic vectors (non-negative x ≥ 0 and ||x||₁ = 1)

$$D(\mathbf{u} \| \mathbf{v}) = \sum_{i=1}^{n} u_i \cdot \log_2 \frac{u_i}{v_i}$$

- Properties of KL divergence
 - ▶ most appropriate for a probabilistic interpretation of M
 - zeroes in v without corresponding zeroes in u are problematic
 - not symmetric, unlike geometric distance measures
 - alternatives: skew divergence, Jensen-Shannon divergence
- ► A symmetric distance metric (Endres & Schindelin 2003)

$$D_{\mathbf{u}\mathbf{v}} = D(\mathbf{u}\|\mathbf{z}) + D(\mathbf{v}\|\mathbf{z}) \text{ with } \mathbf{z} = \frac{\mathbf{u} + \mathbf{v}}{2}$$

Evert/Lapesa/Lenci/Baroni (CC-by-sa)

DSM parameters Measuring distance

DSM Tutorial - Part 2

Similarity measures

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

Norms and normalization

- Angle α between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ is given by $\cos \alpha = \frac{\sum_{i=1}^n u_i \cdot v_i}{\sqrt{\sum_i u_i^2} \cdot \sqrt{\sum_i v_i^2}}$
 - $= \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{u}\|_2 \cdot \|\mathbf{v}\|_2}$
- cosine measure of similarity: cos α
 - ▶ $\cos \alpha = 1 \rightarrow \text{collinear}$ ▶ $\cos \alpha = 0 \rightarrow \text{orthogonal}$
- Corresponding metric:
 angular distance α

wordspace.collocations.de

DSM parameters Measuring distance

Euclidean distance or cosine similarity?

$$d_{2}(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|_{2} = \sqrt{\sum_{i} (u_{i} - v_{i})^{2}}$$
$$= \sqrt{\sum_{i} u_{i}^{2} + \sum_{i} v_{i}^{2} - 2\sum_{i} u_{i} v_{i}}$$
$$= \sqrt{\|\mathbf{u}\|_{2}^{2} + \|\mathbf{v}\|_{2}^{2} - 2\mathbf{u}^{T}\mathbf{v}}$$
$$= \sqrt{2 - 2\cos\phi}$$

 $\square d_2(\mathbf{u}, \mathbf{v})$ is a monotonically increasing function of ϕ

Euclidean distance and cosine similarity are equivalent: if vectors have been normalised ($\|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1$), both lead to the same neighbour ranking.

DSM Tutorial – Part 2

DSM parameters Dimensionality reduction

wordspace.collocations.de

50 / 87

Similarity measures for non-negative vectors

Generalized Jaccard coefficient = shared features

$$J(\mathbf{u}, \mathbf{v}) = \frac{\sum_{i=1}^{n} \min\{u_i, v_i\}}{\sum_{i=1}^{n} \max\{u_i, v_i\}}$$

- ▶ $1 J(\mathbf{u}, \mathbf{v})$ is a distance metric (Kosub 2016)
- An asymmetric measure of feature overlap (Clarke 2009)

$$o(\mathbf{u},\mathbf{v}) = \frac{\sum_{i=1}^{n} \min\{u_i, v_i\}}{\sum_{i=1}^{n} u_i}$$

DSM Tutorial – Part 2

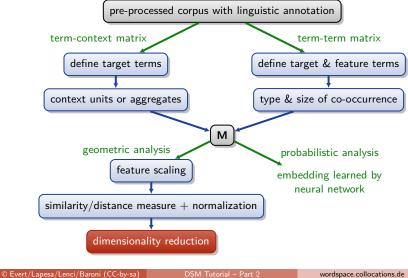
DSM parameters Dimensionality reduction

Dimensionality reduction = model compression

- Co-occurrence matrix M is often unmanageably large and can be extremely sparse
 - Google Web1T5: 1M × 1M matrix with one trillion cells, of which less than 0.05% contain nonzero counts (Evert 2010)
- Compress matrix by reducing dimensionality (= rows)
- **Feature selection**: columns with high frequency & variance
 - measured by entropy, chi-squared test, nonzero count, ...
 - may select similar dimensions and discard valuable information
- Projection into (linear) subspace
 - principal component analysis (PCA)
 - independent component analysis (ICA)
 - random indexing (RI)
 - intuition: preserve distances between data points

Building a distributional model

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)



© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

53 / 87

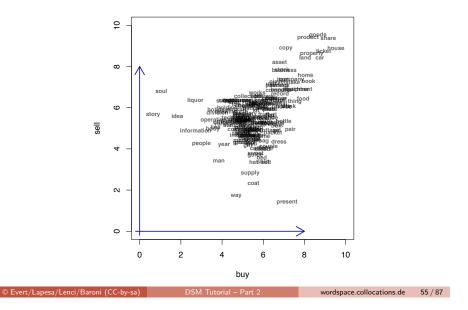
wordspace.collocations.de 51 / 87

Dimensionality reduction & latent dimensions

Landauer & Dumais (1997) claim that LSA dimensionality reduction (and related PCA technique) uncovers **latent dimensions** by exploiting correlations between features.

	noun	buy	sell
Example: term-term matrix	antique	5.12	5.50
V-Obj co-oc. extracted from BNC	bread	5.96	3.99
targets = noun lemmas	computer	6.75	6.83
 features = verb lemmas 	factory	4.95	4.72
	group	4.93	4.28
feature scaling: association scores	jewellery	5.11	5.73
(SketchEngine log Dice)	mill	5.14	5.41
	people	3.00	4.26
▶ $k = 186$ nouns with $f_{\sf buy} + f_{\sf sell} \ge 25$	record	6.81	6.68
n = 2 dimensions: buy and sell	souvenir	5.45	4.67
· · · · · · · · · · · · · · · · · · ·	ticket	8.93	8.74

Dimensionality reduction & latent dimensions



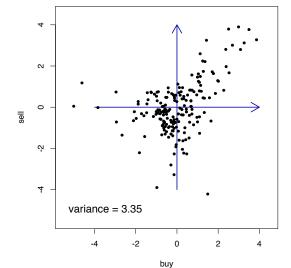
DSM parameters Dimensionality reduction

Motivating latent dimensions & subspace projection

- The latent property of being a commodity is "expressed" through associations with several verbs: sell, buy, acquire, ...
- Consequence: these DSM dimensions will be correlated
- Identify latent dimension by looking for strong correlations (or weaker correlations between large sets of features)
- Projection into subspace V of k < n latent dimensions as a "noise reduction" technique → LSA
- Assumptions of this approach:
 - "latent" distances in V are semantically meaningful
 - other "residual" dimensions represent chance co-occurrence patterns, often particular to the corpus underlying the DSM

6M parameters Dimensionality reduction

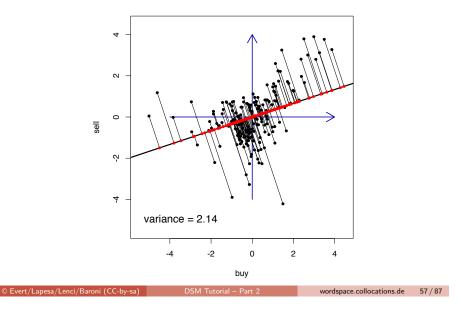
PCA dimensionality reduction: orthogonal projection



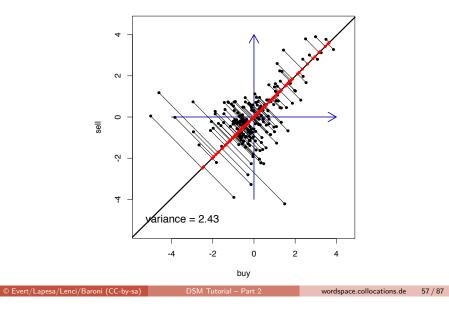
© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

wordspace.collocations.de

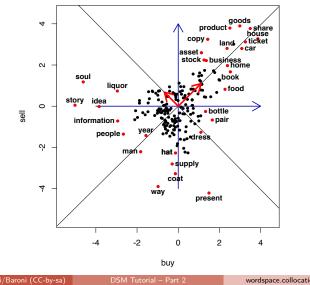
PCA dimensionality reduction: orthogonal projection



PCA dimensionality reduction: orthogonal projection



DSM parameters Dimensionality reduction



Dimensionality reduction

PCA dimensionality reduction

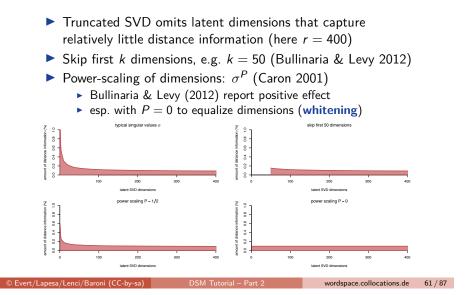
- Principal component analysis (PCA)
 - orthogonal projection into orthogonal latent dimensions
 - finds optimal subspace of given dimensionality (such that orthogonal projection preserves distance information)
 - ▶ but requires features centered at $0 \rightarrow$ no longer sparse
- Singular value decomposition (SVD)
 - the mathematical algorithm behind PCA
 - often applied without centering in distributional semantics
 - optimality of subspace not guaranteed
 - **i** first dimension(s) uninteresting (\mapsto non-negative quadrant)
- ▶ NB: row vectors should be renormalised after PCA/SVD
 - unless cosine similarity / angular distance is used
 - also normalise vectors before dimensionality reduction

DSM Tutorial - Part 2

Dimensionality reduction in practice

SVD is the algorithm behind PCA dimensionality reduction
<pre>> TT2 <- dsm.projection(TT, n=2, method="svd")</pre>
> TT2
svd1 svd2
cat -0.733 -0.6615
dog -0.782 -0.6110
animal -0.914 -0.3606
time -0.993 0.0302
reason -0.889 0.4339
cause -0.817 0.5615
effect -0.871 0.4794
> x <- TT2[, 1] # first latent dimension
> y <- TT2[, 2] # second latent dimension
> plot(x, y, pch=20, col="red",
<pre>xlim=extendrange(x), ylim=extendrange(y))</pre>
<pre>> text(x, y, rownames(TT2), pos=3)</pre>

Scaling latent dimensions



DSM parameters Dimensionality reduction

DSM Tutorial – Part 2

Power-scaling in practice

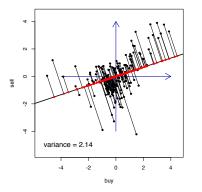
© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

> TT2		1 0					· •
	svd1	svd2					
cat	-0.322	-0.5110					
log	-0.343	-0.4721					
animal	-0.401	-0.2786					
time	-0.436	0.0233					
reason	-0.390	0.3353					
cause	-0.359	0.4338					
effect	-0.383	0.3704					
> sigm > scal	a <- a eMargi	ttr(TT2, ns(TT2,	be applie sigma cols=si	") gma^0.	# .5) #	P = 1/	

DSM parameters Dimensionality reduction

Dimensionality reduction by RI

- Random indexing (RI)
 - project into random subspace (Sahlgren & Karlgren 2005)
 - reasonably good if there are many subspace dimensions
 - can be performed online w/o collecting full co-oc. matrix



wordspace.collocations.de

60 / 87

Outline

DSM parameter

A taxonomy of DSM parameters Context type & size Feature scaling Measuring distance Dimensionality reduction

Building a DSM

Sparse matrices

Example: a verb-object DSM

Appendix

Taxonomy examples Three famous DSMs in detail

Scaling up to the real world

- So far, we have worked on minuscule toy models
- We want to scale up to real world data sets now
- ▶ Example 1: span-based DSM on BNC content words
 - ▶ 83,926 lemma types with $f \ge 10$
 - term-term matrix with $83,926 \cdot 83,926 = 7$ billion entries
 - standard representation requires 56 GB of RAM (8-byte floats)
 - only 22.1 million non-zero entries (= 0.32%)
- Example 2: Google Web 1T 5-grams (1 trillion words)
 - more than 1 million word types with $f \ge 2500$
 - term-term matrix with 1 trillion entries requires 8 TB RAM
 - ▶ only 400 million non-zero entries (= 0.04%)

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

wordspace.collocations.de

64 / 87

Building a DSM Sparse matrices

Sparse matrix representation

Invented example of a sparsely populated DSM matrix

eat get hear kill see use

		0				
boat	.	59		•	39	23
cat	•	•	•	26	58	•
cup	•	98	•	•	•	•
cup dog knife	33	•	42	•	83	•
knife	•	•	•	•	•	84
pig	9	•	•	27		

Store only non-zero entries in compact sparse matrix format

row	col	value	row	col	value
1	2	59	4	1	33
1	5	39	4	3	42
1	6	23	4	5	83
2	4	26	5	6	84
2	5	58	6	1	9
3	2	98	6	4	27

Building a DSM Sparse matrices

DSM Tutorial – Part 2

Working with sparse matrices

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
 - convention: column-major matrix (data stored by columns)
- Specialised algorithms for sparse matrix algebra
 - especially matrix multiplication, solving linear systems, etc.
 - take care to avoid operations that create a dense matrix!
- R implementation: Matrix package
 - essential for real-life distributional semantics
 - wordspace provides additional support for sparse matrices (vector distances, sparse SVD, ...)
- Other software: Matlab, Octave, Python + SciPy
 - TensorFlow, PyTorch, ... always use dense matrices!

wordspace.collocations.de

Building a DSM Example: a verb-object DSM	Building a DSM Example: a verb-object DSM
Dutline	Triplet tables
DSM parameters	 A sparse DSM matrix can be represented as a table of triple (target, feature, co-occurrence frequency)
A taxonomy of DSM parameters Context type & size	 for syntactic co-occurrence and term-document matrices, marginals can be computed from a complete triplet table
Feature scaling Measuring distance	<pre>for surface and textual co-occurrence, marginals have to be provided in separate files (see ?read.dsm.triplet)</pre>
Dimensionality reduction	noun rel verb f mode
Building a DSM Sparse matrices	dogsubjbite3spokendogsubjbite12writtendogobjbite4written
Example: a verb-object DSM	dog obj stroke 3 written
Appendix	
Taxonomy examples	DSM_VerbNounTriples_BNC contains additional information
Three famous DSMs in detail	syntactic relation between noun and verbwritten or spoken part of the British National Corpus
Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 2 wordspace.collocations.de 6	/87 © Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 2 wordspace.collocations.

Building a DSM Example: a verb-object DSM

Constructing a DSM from a triplet table

- Additional information can be used for filtering (verb-object relation), or aggregate frequencies (spoken + written BNC)
- > tri <- subset(DSM_VerbNounTriples_BNC, rel == "obj")</pre>
- Construct DSM object from triplet input
 - raw.freq=TRUE indicates raw co-occurrence frequencies (rather than a pre-weighted DSM)
 - constructor aggregates counts from duplicate entries
 - marginal frequencies are automatically computed
- > VObj # inspect marginal frequencies (e.g. head(VObj\$rows, 20))

Building a DSM Example: a verb-object DSM

Exploring the DSM

> VObj <-	dsm.sco	re(VObj,	score="]	MI", norm	alize=TRUE)			
73.9 cichlid	cat 75.9 kid	animal 76.2	rabbit 77.0 creature		guy			
<pre>> nearest.neighbours(VObj, "dog", method="manhattan") # NB: we used an incompatible Euclidean normalization!</pre>								

> VObj50 <- dsm.projection(VObj, n=50, method="svd")
> nearest.neighbours(VObj50, "dog")

Building a DSM Example: a verb-object DSM

Practice

- Code examples and further explanations: hands_on_day2.R
- How many different models can you build from DSM_VerbNounTriples_BNC?
 - ▶ apply different filters, scores, transformations and metrics
 - explore nearest neighbours of selected word
- Build real-life DSMs from pre-compiled co-occurrence data
 - http://wordspace.collocations.de/doku.php/course:material
 - load pre-compiled matrix and apply different parameters
 - compare nearest neighbours or semantic maps
- Learn how to import your own co-occurrence data hands_on_day2_input_formats.R
 - download example data sets to subdirectory data/

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)
--

wordspace.collocations.de

Outline

DSM parameter

A taxonomy of DSM parameters Context type & size Feature scaling Measuring distance Dimensionality reduction

Building a DSM

Sparse matrices Example: a verb-object DSM

Appendix

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

Taxonomy examples

Three famous DSMs in deta

wordspace.collocations.de

73 / 87

Appendix Taxonomy examples

Some well-known DSM examples

Latent Semantic Analysis (Landauer & Dumais 1997)

- term-context matrix with document context
- weighting: log term frequency and term entropy
- distance measure: cosine
- dimensionality reduction: SVD

Hyperspace Analogue to Language (Lund & Burgess 1996)

- term-term matrix with surface context
- structured (left/right) and distance-weighted frequency counts
- distance measure: Minkowski metric $(1 \le p \le 2)$
- dimensionality reduction: feature selection (high variance)

Appendix Taxonomy examples

DSM Tutorial – Part 2

Some well-known DSM examples

Infomap NLP (Widdows 2004)

- term-term matrix with unstructured surface context
- weighting: none
- distance measure: cosine
- dimensionality reduction: SVD

Random Indexing (Karlgren & Sahlgren 2001)

- term-term matrix with unstructured surface context
- weighting: various methods
- distance measure: various methods
- dimensionality reduction: random indexing (RI)

Some well-known DSM examples

Dependency Vectors (Padó & Lapata 2007)

- term-term matrix with unstructured dependency context
- weighting: log-likelihood ratio
- distance measure: PPMI-weighted Dice (Lin 1998)
- dimensionality reduction: none

Distributional Memory (Baroni & Lenci 2010)

- term-term matrix with structured and unstructered dependencies + knowledge patterns
- weighting: local-MI on type frequencies of link patterns
- distance measure: cosine
- dimensionality reduction: none

pendix Taxonomy examples

... and an unexpected application

Authorship attribution (Burrows 2002)

- Burrows's Delta method is very popular in modern literary stylometry and authorship attribution (Evert *et al.* 2017)
- document-term matrix with word forms as features
- weighting: relative frequency of word form in document
- feature selection: 200–5,000 most frequent words (mfw)
- ▶ columns are standardized ($\mu = 0, \sigma^2 = 1$) → z-scores
- clustering of documents based on various distance metrics (or nearest-neighbour classifier for known authors)
- dimensionality reduction: none

Evert/Lapesa/Lenci/Baroni (CC-by-sa)

▶ main result: angle/cosine \succ Manhattan \succ Euclidean

pendix Three famous DSMs in detail

Outline

DSM parameters

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

A taxonomy of DSM parameters Context type & size Feature scaling Measuring distance

Building a DSM

Sparse matrices Example: a verb-object DSM

Appendix

Taxonomy examples Three famous DSMs in detail

Appendix Three famous DSMs in detail

Latent Semantic Analysis (Landauer & Dumais 1997)

- Corpus: 30,473 articles from Grolier's Academic American Encyclopedia (4.6 million words in total)
 - ☞ articles were limited to first 2,000 characters
- ► Word-article frequency matrix for 60,768 words
 - row vector shows frequency of word in each article
- Logarithmic frequencies scaled by word entropy
- Reduced to 300 dim. by singular value decomposition (SVD)
 - borrowed from LSI (Dumais et al. 1988)
 - central claim: SVD reveals latent semantic features, not just a data reduction technique
- Evaluated on TOEFL synonym test (80 items)
 - LSA model achieved 64.4% correct answers
 - also simulation of learning rate based on TOEFL results

wordspace.collocations.de

76 / 87

78 / 87

wordspace.collocations.de

Word Space (Schütze 1992, 1993, 1998)

- Corpus: \approx 60 million words of news messages
 - from the New York Times News Service
- Word-word co-occurrence matrix
 - 20,000 target words & 2,000 context words as features
 - row vector records how often each context word occurs close to the target word (co-occurrence)
 - co-occurrence window: left/right 50 words (Schütze 1998) or ≈ 1000 characters (Schütze 1992)
- Rows weighted by inverse document frequency (tf.idf)
- Context vector = centroid of word vectors (bag-of-words)
 - ${\tt \ensuremath{\boxtimes}}$ goal: determine "meaning" of a context
- Reduced to 100 SVD dimensions (mainly for efficiency)
- Evaluated on unsupervised word sense induction by clustering of context vectors (for an ambiguous word)
 - induced word senses improve information retrieval performance

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 2

HAL (Lund & Burgess 1996)

- ► HAL = Hyperspace Analogue to Language
- Corpus: 160 million words from newsgroup postings
- Word-word co-occurrence matrix
 - same 70,000 words used as targets and features
 - ▶ co-occurrence window of 1 10 words
- Separate counts for left and right co-occurrence
 - ▶ i.e. the context is *structured*
- In later work, co-occurrences are weighted by (inverse) distance (Li et al. 2000)
 - but no dimensionality reduction
- Applications include construction of semantic vocabulary maps by multidimensional scaling to 2 dimensions

DSM Tutorial – Part 2

endix Three famous DSMs in detail

HAL (Lund & Burgess 1996)

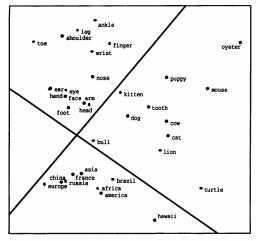


Figure 2. Multidimensional scaling of co-occurrence vectors.

Evert/Lapesa/Lenci/Baroni (CC-by-sa)

wordspace.collocations.de

80 / 87

wordspace.collocations.de 81 / 87

Appendix Three famous DSMs in detail

References I

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

- Baroni, Marco and Lenci, Alessandro (2010). Distributional Memory: A general framework for corpus-based semantics. *Computational Linguistics*, 36(4), 673–712.
- Bullinaria, John A. and Levy, Joseph P. (2007). Extracting semantic representations from word co-occurrence statistics: A computational study. *Behavior Research Methods*, **39**(3), 510–526.
- Bullinaria, John A. and Levy, Joseph P. (2012). Extracting semantic representations from word co-occurrence statistics: Stop-lists, stemming and SVD. *Behavior Research Methods*, 44(3), 890–907.
- Burrows, John (2002). 'Delta': a measure of stylistic difference and a guide to likely authorship. *Literary and Linguistic Computing*, **17**(3), 267–287.
- Caron, John (2001). Experiments with LSA scoring: Optimal rank and basis. In
 M. W. Berry (ed.), *Computational Information Retrieval*, pages 157–169. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
- Clarke, Daoud (2009). Context-theoretic semantics for natural language: an overview. In Proceedings of the Workshop on Geometrical Models of Natural Language Semantics, pages 112–119, Athens, Greece.

Appendix Three famous DSMs in detail

References II

- Dumais, S. T.; Furnas, G. W.; Landauer, T. K.; Deerwester, S.; Harshman, R. (1988). Using latent semantic analysis to improve access to textual information. In CHI '88: Proceedings of the SIGCHI conference on Human factors in computing systems, pages 281–285.
- Endres, Dominik M. and Schindelin, Johannes E. (2003). A new metric for probability distributions. *IEEE Transactions on Information Theory*, **49**(7), 1858–1860.
- Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. Dissertation, Institut für maschinelle Sprachverarbeitung, University of Stuttgart.
- Evert, Stefan (2008). Corpora and collocations. In A. Lüdeling and M. Kytö (eds.), Corpus Linguistics. An International Handbook, chapter 58, pages 1212–1248. Mouton de Gruyter, Berlin, New York.
- Evert, Stefan (2010). Google Web 1T5 n-grams made easy (but not for the computer). In *Proceedings of the 6th Web as Corpus Workshop (WAC-6)*, pages 32–40, Los Angeles, CA.
- Evert, Stefan; Proisl, Thomas; Jannidis, Fotis; Reger, Isabella; Pielström, Steffen; Schöch, Christof; Vitt, Thorsten (2017). Understanding and explaining Delta measures for authorship attribution. *Digital Scholarship in the Humanities*, 22(suppl_2), ii4-ii16.

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

wordspace.collocations.de

84 / 87

References III

- Karlgren, Jussi and Sahlgren, Magnus (2001). From words to understanding. In Y. Uesaka, P. Kanerva, and H. Asoh (eds.), *Foundations of Real-World Intelligence*, chapter 294–308. CSLI Publications, Stanford.
- Kosub, Sven (2016). A note on the triangle inequality for the Jaccard distance. CoRR, abs/1612.02696.
- Landauer, Thomas K. and Dumais, Susan T. (1997). A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. *Psychological Review*, **104**(2), 211–240.
- Levy, Omer and Goldberg, Yoav (2014). Neural word embedding as implicit matrix factorization. In Proceedings of Advances in Neural Information Processing Systems 27, pages 2177–2185. Curran Associates, Inc.
- Levy, Omer; Goldberg, Yoav; Dagan, Ido (2015). Improving distributional similarity with lessons learned from word embeddings. *Transactions of the Association for Computational Linguistics*, 3, 211–225.
- Li, Ping; Burgess, Curt; Lund, Kevin (2000). The acquisition of word meaning through global lexical co-occurences. In E. V. Clark (ed.), *The Proceedings of the Thirtieth Annual Child Language Research Forum*, pages 167–178. Stanford Linguistics Association.

DSM Tutorial – Part 2

Appendix Three famous DSMs in detail

References IV

- Lin, Dekang (1998). Automatic retrieval and clustering of similar words. In *Proceedings of the 17th International Conference on Computational Linguistics* (COLING-ACL 1998), pages 768–774, Montreal, Canada.
- Lund, Kevin and Burgess, Curt (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, & Computers, 28(2), 203–208.
- Padó, Sebastian and Lapata, Mirella (2007). Dependency-based construction of semantic space models. *Computational Linguistics*, **33**(2), 161–199.
- Polajnar, Tamara and Clark, Stephen (2014). Improving distributional semantic vectors through context selection and normalisation. In *Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics*, pages 230–238, Gothenburg, Sweden.
- Sahlgren, Magnus and Karlgren, Jussi (2005). Automatic bilingual lexicon acquisition using random indexing of parallel corpora. *Natural Language Engineering*, **11**, 327–341.
- Schütze, Hinrich (1992). Dimensions of meaning. In *Proceedings of Supercomputing* '92, pages 787–796, Minneapolis, MN.
- Schütze, Hinrich (1993). Word space. In Proceedings of Advances in Neural Information Processing Systems 5, pages 895–902, San Mateo, CA.

wordspace.collocations.de 85 / 87

Appendix Three famous DSMs in detail

References V

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

- Schütze, Hinrich (1998). Automatic word sense discrimination. Computational Linguistics, 24(1), 97–123.
- Widdows, Dominic (2004). *Geometry and Meaning*. Number 172 in CSLI Lecture Notes. CSLI Publications, Stanford.