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The FAST task Free association norms

Cognitive modelling with DSM

▶ Why? – Because we want to know whether DS captures the
mental lexical knowledge of human speakers!

▶ Task: DSM predicts reaction times in priming experiments
(Hare et al. 2009; Lapesa & Evert 2013)

▶ often just experimental items used for multiple-choice task
(e.g. Padó & Lapata 2007; Herdağdelen et al. 2009)

▶ cf. tasks constructed from Lazaridou2013 yesterday
▶ data sets of experimental items: GEK_Items, SPP_Items

▶ Task: DSM predicts EEG potentials (Murphy et al. 2009) or
fMRI brain activation levels (Mitchell et al. 2008)

▶ huge datasets, but tiny and selective vocabulary
▶ Task: DSM predicts human free associations

▶ often considered a “window into the mental lexicon”
▶ free association norms available for thousands of cue words
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The FAST task Free association norms

Free associations
. . . a cue into the organization of the mental lexicon?

Which words come to your mind if you hear . . .

▶ whisky →

gin, drink, scotch, bottle, soda
▶ giraffe →

neck, animal, zoo, long, tall

▶ Hypotheses concerning the nature of the underlying process:
▶ Result of learning-by-contiguity (James 1890)

☞ syntagmatic (1st-order)
▶ Result of symbolic processes which make use of complex

semantic structures (Clark 1970) ☞ paradigmatic (2nd-order)
▶ Large collections available

▶ Edinburgh Associative Thesaurus (EAT)
8210 stimuli, 100 subjects (Kiss et al. 1973)

▶ University of South Florida Free Association Norms (USF)
5019 stimuli, 6000 subjects (Nelson et al. 2004)
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The FAST task Free association norms

Free associations in a DSM
Drought in EAT vs. DSM
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The FAST task Free association norms

Free associations & co-occurrence data
Previous work

▶ Wettler et al. (2005)
▶ Data: subset of EAT (100 stimuli)
▶ Task: prediction of the most common free associate
▶ Model: first-order model, BNC, large window (20 words)
▶ Result: human associative responses can be predicted from

contiguities between words in language use (collocations)

▶ ESSLLI 2008 Shared Task
▶ Data: subset of EAT (a different set of 100 stimuli)
▶ Task 1: discrimination btw. the most common associate and

hapax/random distractors ➜ multiple choice
▶ Task 2: prediction of the most common free associate
▶ Result: first-order models (collocations) are better than

second-order models (DSMs)
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The FAST task A problem with standard tasks
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The FAST task A problem with standard tasks

Problems of standard tasks & data sets

Problems with semantic interpretation of DSMs don’t only stem
from evaluation methodology . . .

. . . data sets can be problematic as well!

Two major problems:
▶ DSMs may exploit contingent properties of the task

▶ random fillers as distractors (“controls”)
➥ recognize random word pairs rather than semantic relations

▶ choice of clearly separated categories and prototypical
exemplars in noun clustering task (ESSLLI 2008)
➥ much harder to identify categories in general word list

▶ typical superordinate-level words in hypernym detection task
➥ recognize “typical hypernym” in a multiple-choice setting

▶ Data set size too small
▶ e.g. 97.5% accuracy on 80 TOEFL items ➜ over-fitting

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 5 wordspace.collocations.de 9 / 48



The FAST task A problem with standard tasks

Problems of standard tasks & data sets

Problems with semantic interpretation of DSMs don’t only stem
from evaluation methodology . . .

. . . data sets can be problematic as well!

Two major problems:
▶ DSMs may exploit contingent properties of the task

▶ random fillers as distractors (“controls”)
➥ recognize random word pairs rather than semantic relations

▶ choice of clearly separated categories and prototypical
exemplars in noun clustering task (ESSLLI 2008)
➥ much harder to identify categories in general word list

▶ typical superordinate-level words in hypernym detection task
➥ recognize “typical hypernym” in a multiple-choice setting

▶ Data set size too small
▶ e.g. 97.5% accuracy on 80 TOEFL items ➜ over-fitting

© Evert/Lapesa/Lenci/Baroni (CC-by-sa) DSM Tutorial – Part 5 wordspace.collocations.de 9 / 48



The FAST task A problem with standard tasks

DSM evaluation problems: a concrete example
The CogALex-V Shared Task (Santus et al. 2016)

▶ Aim: better linguistic understanding of DS from identification
of specific semantic relations

▶ Data: 747 target words with approx. 10 candidate relata each
▶ training set: 318 targets, 3054 word pairs
▶ test set: 429 targets, 4260 word pairs

▶ Subtask 1: related vs. unrelated word pairs
▶ unrelated pairs are random fillers

☞ relatively easy: F1 = 79.0% (best system)
▶ Subtask 2: distinguish between semantic relations

▶ syn: w2 can be used with same meaning as w1
▶ ant: w2 can be used as the opposite of w1
▶ hyper: w1 is a kind of w2
▶ part_of: w1 is a part of w2
▶ random: no relation (random word + manual check)

☞ relatively hard: F1 = 44.5% (best system: deep learning)
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The FAST task A problem with standard tasks

DSM evaluation problems: a concrete example
Mach 5 at CogALex 2016 (Evert 2016)

▶ Mach 5 participated in the CogALex-V Shared Task as a
traditional “count” (non-neural) DSM

▶ 10-billion-word Web corpus (Schäfer & Bildhauer 2012)
▶ syntactic dependencies from C&C parser (Curran et al. 2007)
▶ 26.5k target words, up to 300k feature dimensions
▶ other parameters set according to Lapesa & Evert (2014)

▶ Parameter optimization on training data (subtask 1)

▶ Machine learning on optimized representations (subtask 2)
▶ learns relevance weights for 600 latent SVD dimensions
▶ best results from combination of different SVD spaces

☞ Try it yourself: http://www.collocations.de/data/#mach5
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The FAST task A problem with standard tasks

Mach 5: Parameter optimization
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The FAST task A problem with standard tasks

Mach 5: Parameter optimization
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The FAST task A problem with standard tasks

Mach 5: Are we doing well?

F1 = 77.88% for related vs. unrelated (best: 79.0%)

However . . .

▶ Parameter optimization yields surprising result:
best model uses < 50k features with relatively low frequency

▶ Nearest neighbours are unsatisfactory, e.g. for play:
playing (54.1◦), star (62.8◦), reunite (62.9◦), co-star (64.3◦),
reprise (64.4◦), player (66.7◦), score (68.5◦), audition (69.2◦),
sing (69.4◦), actor (69.5), understudy (69.6), game (70.3), . . .

▶ Why is Mach 5 still doing so well in the task, then?
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The FAST task A problem with standard tasks

Mach 5: What is going wrong?
A disturbing result . . .
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☞ DSM has learned to recognize random word pairs (at 90◦)!
☞ We need better data sets with high-quality distractors!
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The FAST task FAST: Data set and tasks

The Free ASsociation Task (FAST) data set
Preprocessing

1. Starting point: EAT (8210 stimuli), USF (5019 stimuli)

2. Out-of-context POS tagging
▶ Annotate items in EAT and USF (stimuli and responses) with

part of speech information
▶ How? Most frequent POS in Web corpus ENCOW: publicly

available 10-billion-word Web corpus ➜ replicability

3. Out-of-context lemmatization
▶ morpha, a robust morphological analyzer

http://users.sussex.ac.uk/~johnca/morph.html
▶ lemmatization of unknown words based on POS tag

4. Annotation with frequency information
▶ frequency lists from ENCOW (lemmatised with morpha)
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The FAST task FAST: Data set and tasks

The Free ASsociation Task (FAST) data set
Preprocessing

1. Starting point: EAT (8210 stimuli), USF (5019 stimuli)
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The FAST task FAST: Data set and tasks

The Free ASsociation Task (FAST) data set
Item selection

For each stimulus in EAT (8210) and USF (5019) select a:

▶ first: the most common associate response
▶ hapax: a response generated for the target once

▶ or twice for USF (hapax responses are omitted there)
▶ if several hapax candidates are available, pick the one whose

lemma frequency matches most closely that of first
▶ random, by randomly picking a word which was among the

top 25% associates of another stimulus (and produced at
least 5 times). If possible:

▶ match lemma frequency of random and first
▶ try to use each random only once

(multiwords, numbers, closed-class words, and other words that do
not occur in ENCOW were discarded)
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The FAST task FAST: Data set and tasks

The FAST data set
Final data set

▶ EAT subset: 3836 test items + 3774 training items
▶ USF subset: 2359 test items + 2360 training items
▶ Item = (stimulus, first, hapax, random)

▶ Each stimulus and candidate response provided as lowercased
word form and POS-disambiguated lemma

+ ENCOW frequency information
+ # test subjects who produced response

▶ Download: https://osf.io/cd8ar/ (Evert & Lapesa 2021)
▶ Included as FAST in package wordspaceEval
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The FAST task FAST: Data set and tasks

The FAST dataset
The new EAT task isn’t perfect either . . . yet

▶ Guessing POS from corpus doesn’t always work
▶ e.g. fitVERB → epilepticADJ, aristocracyNOUN → lordsNAME
▶ but very few lemmatization errors (e.g. daiquiri → daiquirus)

▶ Colloquialisms and British slang
▶ e.g. bodNOUN → personNOUN (rare in written corpus)
▶ but Web corpus has Welsh bod ‘to be’ mistagged as noun
▶ DSM neighbours: yn, hynny, mewn, hwn, gyfer, . . . , 49. bloke,

techyNOUN, nus, hon, . . . , 60. guy, mai, geezer, . . .
▶ another example is mellowADJ → yellowADJ
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The FAST task FAST: Data set and tasks

The FAST tasks

Task 1: multiple-choice
▶ Given a stimulus and a <first, hapax, random> triple,

determine which of the three candidates is first.
▶ Stimulus: accept, < receive, love, soul>

▶ Performance: accuracy
▶ Baseline: 33.3%
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The FAST task FAST: Data set and tasks

The FAST tasks

Task 2: open-vocabulary lexical access
▶ Given a stimulus (e.g., accept), predict first (receive) out of

a candidate set (all first: USF=1197, EAT=1633)
▶ Performance: two measures

▶ Soft accuracy: average over reciprocal rank (1/r) of the true first
associate, as a percentage.

⋆ similar to accuracy of predicting first associate,
but awards partial points for almost correct guesses

⋆ always ≥ top-1 accuracy
▶ Log rank: geometric mean of r across all stimuli.

⋆ corresponds to average over log r
⋆ better differentiation for models that rarely get the correct

answer (and hence score low on soft accuracy)
▶ Baselines

▶ Soft accuracy: USF=0.64% and EAT=0.49%
▶ Log rank: USF=442.0 and EAT=602.4
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The FAST task FAST: Experiments

Outline

The FAST task
Free association norms
A problem with standard tasks
FAST: Data set and tasks
FAST: Experiments
Hands-on exercises

Mathematical insights
Matrix factorization
Syntagmatic vs. paradigmatic information
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The FAST task FAST: Experiments

Experimental setup
▶ DSMs (second-order): symmetric span of 2 vs. 10 words, other

parameters set according to Lapesa & Evert (2014).
▶ we experiment with Caron P (Bullinaria & Levy 2012)
▶ P = 0 equalizes contributions of SVD dimensions

▶ Collocations (first-order): symmetric span, 2 vs. 10 words, with
four different association measures (Evert 2008)

▶ conditional probability P(w2|w1)
▶ log-likelihood log G2 (popular for collocations)
▶ MI2 = log2

O2

E = geometric mean of P(w2|w1) and P(w1|w2)
▶ PPMI (popular for DSMs)

▶ Corpus data: for DSMs and collocations
▶ British National Corpus: 100M words
▶ ENCOW 2014 Web corpus, unique sentences: 8.5G words

▶ Neural embeddings: pre-trained models
▶ word2vec (Mikolov et al. 2013): 100G tokens of Google News
▶ GloVe (Pennington et al. 2014): 6G tokens Wikipeda + Gigaword
▶ GloVe: 42G tokens Web data (Common Crawl)
▶ FastText (Joulin et al. 2017): 600G tokens Common Crawl
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The FAST task FAST: Experiments

Results: Multiple-choice task

PPMI [2]

MI2 [2]

log G2 [2]

P(w2|w1) [2]

DSMP=0 [2]

DSM [2]

multiple-choice task (BNC)

accuracy (%)

50 60 70 80 90

EAT

50 60 70 80 90

▶ British National Corpus
(100M words)

▶ EAT subset
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Results: Multiple-choice task
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▶ EAT vs. USF

▶ Embeddings trained on
much larger corpora

▶ Combined 1st-/2nd-order
▶ DSMP=0 + MI2
▶ using neighbour rank
▶ harmonic mean

▶ competitive with
state-of-the-art
embeddings
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The FAST task FAST: Experiments

Results: Multiple-choice task
n = 2359 n = 3836

model span USF EAT
DSM 2 76.01% 81.78%
DSMP=0 2 74.31% 78.62%
DSM 10 76.98% 82.46%
DSMP=0 10 76.39% 79.30%
P(w2|w1) 10 77.58% 84.02%
log G2 10 77.83% 83.00%
MI2 2 78.64% 83.92%
PPMI 10 73.80% 81.18%
Combined 2 77.58% 85.09%
Combined 10 80.50% 85.71%
Combined mix 80.41% 85.97%
word2vec – 76.11% 77.78%
GloVe – 76.71% 79.80%
GloVe CC – 80.12% 81.72%
FastText – 82.24% 83.97%

▶ ENCOW 2014 Web
(8.5G words)

▶ EAT vs. USF
▶ Embeddings trained on

much larger corpora
▶ Combined 1st-/2nd-order

▶ DSMP=0 + MI2
▶ using neighbour rank
▶ harmonic mean
▶ competitive with

state-of-the-art
embeddings
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The FAST task FAST: Experiments

Results: Open-choice task
n = 2359 n = 3836

USF EAT
model span soft acc. lrank soft acc. lrank
DSM 2 41.54% 6.6 34.53% 9.9
DSMP=0 2 42.12% 7.6 34.67% 12.1
DSM 10 42.01% 6.0 35.93% 9.1
DSMP=0 10 42.86% 7.1 35.68% 11.6

P(w2|w1) 10 22.34% 17.0 11.27% 27.1
log G2 10 37.63% 6.6 34.13% 8.8
MI2 10 39.73% 6.2 34.01% 8.7
PPMI 10 35.34% 8.2 29.29% 12.2
Combined 2 42.29% 5.5 37.54% 7.0
Combined 10 44.99% 4.8 39.48% 6.5
Combined mix 45.36% 4.8 39.48% 6.4
word2vec – 38.98% 7.7 30.51% 14.8
GloVe – 39.22% 7.6 30.19% 13.8
GloVe CC – 44.01% 5.7 34.26% 10.5
FastText – 51.00% 4.1 40.34% 7.2
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The FAST task Hands-on exercises

Outline

The FAST task
Free association norms
A problem with standard tasks
FAST: Data set and tasks
FAST: Experiments
Hands-on exercises

Mathematical insights
Matrix factorization
Syntagmatic vs. paradigmatic information
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The FAST task Hands-on exercises

Hands-on exercise
▶ Solve the FAST multiple-choice task with a DSM

▶ eval.multiple.choice() does most of the work for you
▶ use details=TRUE to inspect biggest mistakes and explore

performance (e.g. wrt. frequency of stimulus and response)

▶ Can you also make use of first-order (collocation) data?
▶ hint: the DSM matrix M contains co-occurrence counts

▶ Advanced: Can you combine DSMs with first-order data?
▶ hint: use average of DSM and first-order “neighbour” rank

▶ Advanced: Try to solve the open-choice lexical access task
▶ no ready-made evaluation function in wordspace yet

▶ R code in hands_on_day5.R will help you get started!
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The FAST task Hands-on exercises

Bonus task: Reverse free associations
The CogALex-IV shared task (Rapp & Zock 2014)

Reverse multiword free association
▶ wheel, driver, bus, drive, lorry → ?
▶ away, minded, gone, present, ill → ?

▶ Data: subset of EAT (2000 stimuli each training/test)

▶ Very challenging (best: 35% accuracy)
▶ open-ended vocabulary (including inflected surface forms!)
▶ need for integrating predictions of different stimuli

▶ And the winner was . . .
▶ a system using first-order statistics to re-rank the output of a

“standard" DSM (Ghosh et al. 2015)
▶ our submission: best 1st-order: 27.7% / best 2nd-order: 14.0%

▶ Try it yourself: CogALex4.rda
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Mathematical insights Matrix factorization

Outline

The FAST task
Free association norms
A problem with standard tasks
FAST: Data set and tasks
FAST: Experiments
Hands-on exercises

Mathematical insights
Matrix factorization
Syntagmatic vs. paradigmatic information
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Mathematical insights Matrix factorization

Dimensionality reduction as matrix factorization

▶ PCA is based on singular value decomposition (SVD),
which factorises any matrix M into

M = UΣVT

where U and V are orthogonal and Σ is a diagonal matrix of
singular values σ1 ≥ σ2 ≥ · · · ≥ σm > 0



n

k M


=



m

k U


·

σ1 m

m
. . .
Σ σm

·


n

m VT


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Mathematical insights Matrix factorization

Dimensionality reduction as matrix factorization

▶ Columns ai of U and bi of V (singular vectors) are
orthogonal (aT

i aj = 0) and of unit length (∥ai∥ = 1)
▶ Key property: truncated SVD gives best least-squares

approximation in r -dimensional subspace

Ur Σr VT
r =



...
...

...
...

a1 · · · ar
...

...
... Ur

...


·

σ1
. . .
Σr σr

 ·

· · · · · · b1 · · · · · ·

VT
r

...
· · · · · · br · · · · · ·


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Mathematical insights Matrix factorization

Dimensionality reduction as matrix factorization

▶ Truncated SVD as orthogonal projection

MVr = Ur Σr =


...

...
σ1a1 · · · σr ar

...
...


➜ method="svd" in dsm.projection()

▶ σ2
1 ≥ σ2

2 ≥ . . . = amount of distance information (i.e. variance
of M) captured by each latent dimension

☞ Catch up on the mathematics with Deisenroth et al. (2020)
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Mathematical insights Matrix factorization

Other matrix factorization techniques

▶ Non-negative matrix factorization (NMF)
▶ U and V are stochastic matrices (ai ≥ 0 and ∥ai∥1 = 1)
▶ but no orthogonality constraints
▶ cross-entropy instead of least-squares approximation
▶ iterative algorithm with random initialisation for optimal

rank-r approximation (̸= sequence of ordered components)
▶ see Lee & Seung (2001) and Boutsidis & Gallopoulos (2008)

▶ NMF of term-document matrix ⇐⇒ LDA topic model

UΣVT = σ1a1bT
1 + σ2a2bT

2 + σ3a3bT
3 + . . .

▶ ai = probability distribution of words in i-th topic
▶ bi = distribution of topic across documents
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Mathematical insights Matrix factorization

Other matrix factorization techniques

▶ NMF can be seen as non-orthogonal projection:
UΣ = coordinates of projected points wrt. basis V

1 2 3 4 5

1

2

3

4

5

6

6
 u = (4,5)

b(2)

b(1)

 x = (3,2)
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Mathematical insights Matrix factorization

Other matrix factorization techniques

▶ Levy et al. (2015, 213) show that word2vec embeddings
implicitly factorize a shifted PPMI matrix

▶ sigmoid loss function, weighted towards high frequencies
▶ similarly, GloVe (Pennington et al. 2014) factorizes matrix

of conditional probabilities with a frequency-weighted
least-squares approximation

▶ Explore matrix factorization techniques
☞ hands_on_day5_matrix_factorization.R
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Mathematical insights Syntagmatic vs. paradigmatic information
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Mathematical insights Syntagmatic vs. paradigmatic information

Syntagmatic vs. paradigmatic
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Mathematical insights Syntagmatic vs. paradigmatic information

Syntagmatic vs. paradigmatic
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Syntagmatic vs. paradigmatic
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Mathematical insights Syntagmatic vs. paradigmatic information

Syntagmatic vs. paradigmatic
1st-order = syntagmatic vs. 2nd-order = paradigmatic?

▶ 1st- and 2nd-order models less complementary than expected
➥ relatively small benefit from combination

▶ But intuition not completely wrong (L2/R2):
▶ DSM: duckling → piglet, chick, duck, cygnet, hatchling, . . .
▶ MI2: duckling → ugly, chick, duck, swan, fluffy, roast, . . .

Possible explanation for the overlap under (many) simplifying
assumptions (sentence span, raw cooc freqs, . . . )
▶ Consider a term-context matrix F with very small contexts

▶ e.g. tweets, sentences, paragraphs
▶ or aligned sentence pairs (Sahlgren & Karlgren 2005)

▶ No feature weighting or normalisation
➥ F is binary, i.e. fij ∈ {0, 1}
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Mathematical insights Syntagmatic vs. paradigmatic information

Excursus: Similarity in term-context DSM

▶ What is the cosine similarity of fi and fj?

fi =
[
0 0 1 0 1 0 0 1 0 1 0 0

]
fj =

[
1 0 1 1 0 0 1 1 0 1 1 1

]

▶ fT
i fj = O = co-occurrence frequency

▶ ∥fi∥2 =
√

R = marginal frequency of term i
▶ ∥fj∥2 =

√
C = marginal frequency of term j

▶ Cosine similarity in F = first-order association

cos α = fT
i fj

∥fi∥2 · ∥fj∥2
= O√

RC
∼

√
MI2
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Mathematical insights Syntagmatic vs. paradigmatic information

Excursus: Term-context vs. term-term DSM

▶ Construct a term-term DSM with textual context = tweet
▶ Recall: co-occurrence frequency mij = fT

i fj

▶ Symmetric co-occurrence matrix M can be derived from F:

M = FFT

▶ Compare SVD of the two matrices

F = UΣVT M = FFT = UΣVT VΣUT

= UΣ2UT

➥ M is power-scaled version of F
▶ dimensionality reduction: Pr (F) = Ur Σr vs. Pr (M) = Ur Σ2

r
▶ F is equivalent to M with Caron P = 1

2
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Mathematical insights Syntagmatic vs. paradigmatic information
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