Hands-on Distributional Semantics Part 5: DS beyond NLP – Free association norms

Stephanie Evert¹ & Gabriella Lapesa² with Alessandro Lenci³ and Marco Baroni⁴

¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
 ²University of Stuttgart, Germany
 ³University of Pisa, Italy
 ⁴University of Trento, Italy

http://wordspace.collocations.de/doku.php/course:esslli2021:start

Copyright © 2009–2022 Evert, Lapesa, Lenci & Baroni | Licensed under CC-by-sa version 3.0

Outline

The FAST task

Free association norms

A problem with standard tasks FAST: Data set and tasks FAST: Experiments Hands-on exercises

Mathematical insights

Matrix factorization Syntagmatic vs. paradigmatic information

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Why? – Because we want to know whether DS captures the mental lexical knowledge of human speakers!

E 6 4 E 6

< □ > < 凸

- Why? Because we want to know whether DS captures the mental lexical knowledge of human speakers!
- Task: DSM predicts reaction times in priming experiments (Hare *et al.* 2009; Lapesa & Evert 2013)
 - often just experimental items used for multiple-choice task (e.g. Padó & Lapata 2007; Herdağdelen *et al.* 2009)
 - ▶ cf. tasks constructed from Lazaridou2013 yesterday
 - data sets of experimental items: GEK_Items, SPP_Items

1 E N 1 E N

- Why? Because we want to know whether DS captures the mental lexical knowledge of human speakers!
- Task: DSM predicts reaction times in priming experiments (Hare *et al.* 2009; Lapesa & Evert 2013)
 - often just experimental items used for multiple-choice task (e.g. Padó & Lapata 2007; Herdağdelen *et al.* 2009)
 - ▶ cf. tasks constructed from Lazaridou2013 yesterday
 - data sets of experimental items: GEK_Items, SPP_Items
- Task: DSM predicts EEG potentials (Murphy et al. 2009) or fMRI brain activation levels (Mitchell et al. 2008)
 - huge datasets, but tiny and selective vocabulary

< ロ > < 同 > < 回 > < 回 >

- Why? Because we want to know whether DS captures the mental lexical knowledge of human speakers!
- Task: DSM predicts reaction times in priming experiments (Hare *et al.* 2009; Lapesa & Evert 2013)
 - often just experimental items used for multiple-choice task (e.g. Padó & Lapata 2007; Herdağdelen *et al.* 2009)
 - ▶ cf. tasks constructed from Lazaridou2013 yesterday
 - data sets of experimental items: GEK_Items, SPP_Items
- Task: DSM predicts EEG potentials (Murphy et al. 2009) or fMRI brain activation levels (Mitchell et al. 2008)
 - huge datasets, but tiny and selective vocabulary
- Task: DSM predicts human free associations
 - often considered a "window into the mental lexicon"
 - free association norms available for thousands of cue words

< 日 > < 同 > < 三 > < 三 >

... a cue into the organization of the mental lexicon?

Which words come to your mind if you hear ...

 \blacktriangleright whisky \rightarrow

3

A D N A B N A B N A B N

... a cue into the organization of the mental lexicon?

Which words come to your mind if you hear

- whisky \rightarrow gin, drink, scotch, bottle, soda
- ▶ giraffe \rightarrow

3

A B < A B </p>

< □ > < 同 >

... a cue into the organization of the mental lexicon?

Which words come to your mind if you hear ...

- whisky \rightarrow gin, drink, scotch, bottle, soda
- giraffe \rightarrow neck, animal, zoo, long, tall

E 6 4 E 6

... a cue into the organization of the mental lexicon?

Which words come to your mind if you hear ...

- whisky \rightarrow gin, drink, scotch, bottle, soda
- giraffe \rightarrow neck, animal, zoo, long, tall
- Hypotheses concerning the nature of the underlying process:
 - Result of learning-by-contiguity (James 1890)

```
Syntagmatic (1<sup>st</sup>-order)
```

 Result of symbolic processes which make use of complex semantic structures (Clark 1970) Paradigmatic (2nd-order)

... a cue into the organization of the mental lexicon?

Which words come to your mind if you hear ...

- whisky \rightarrow gin, drink, scotch, bottle, soda
- giraffe \rightarrow neck, animal, zoo, long, tall

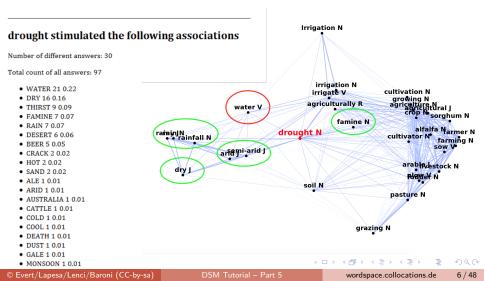
Hypotheses concerning the nature of the underlying process:

Result of learning-by-contiguity (James 1890)

```
Syntagmatic (1<sup>st</sup>-order)
```

- Result of symbolic processes which make use of complex semantic structures (Clark 1970)
 ^{ISF} paradigmatic (2nd-order)
- Large collections available
 - Edinburgh Associative Thesaurus (EAT) 8210 stimuli, 100 subjects (Kiss et al. 1973)
 - University of South Florida Free Association Norms (USF) 5019 stimuli, 6000 subjects (Nelson *et al.* 2004)

Free associations in a DSM Drought in EAT vs. DSM



Free associations & co-occurrence data

Previous work

▶ Wettler *et al.* (2005)

- Data: subset of EAT (100 stimuli)
- Task: prediction of the most common free associate
- Model: first-order model, BNC, large window (20 words)
- Result: human associative responses can be predicted from contiguities between words in language use (collocations)

ESSLLI 2008 Shared Task

- Data: subset of EAT (a different set of 100 stimuli)
- ► Task 1: discrimination btw. the most common associate and hapax/random distractors → multiple choice
- ► Task 2: prediction of the most common free associate
- Result: first-order models (collocations) are better than second-order models (DSMs)

Outline

The FAST task

Free association norms A problem with standard tasks FAST: Data set and tasks FAST: Experiments Hands-on exercises

Mathematical insights

Matrix factorization Syntagmatic vs. paradigmatic information

E 6 4 E 6

Problems of standard tasks & data sets

Problems with semantic interpretation of DSMs don't only stem from evaluation methodology ...

... data sets can be problematic as well!

Problems of standard tasks & data sets

Problems with semantic interpretation of DSMs don't only stem from evaluation methodology ...

... data sets can be problematic as well!

Two major problems:

DSMs may exploit contingent properties of the task

- random fillers as distractors ("controls")
 - \blacktriangleright recognize random word pairs rather than semantic relations
- choice of clearly separated categories and prototypical exemplars in noun clustering task (ESSLLI 2008)
 - much harder to identify categories in general word list
- typical superordinate-level words in hypernym detection task
 recognize "typical hypernym" in a multiple-choice setting
- Data set size too small
 - ▶ e.g. 97.5% accuracy on 80 TOEFL items → over-fitting

DSM evaluation problems: a concrete example

The CogALex-V Shared Task (Santus et al. 2016)

- Aim: better linguistic understanding of DS from identification of specific semantic relations
- ▶ Data: 747 target words with approx. 10 candidate relata each
 - training set: 318 targets, 3054 word pairs
 - test set: 429 targets, 4260 word pairs

DSM evaluation problems: a concrete example

The CogALex-V Shared Task (Santus et al. 2016)

- Aim: better linguistic understanding of DS from identification of specific semantic relations
- ▶ Data: 747 target words with approx. 10 candidate relata each
 - training set: 318 targets, 3054 word pairs
 - test set: 429 targets, 4260 word pairs
- Subtask 1: related vs. unrelated word pairs
 - unrelated pairs are random fillers
 - relatively easy: $F_1 = 79.0\%$ (best system)

DSM evaluation problems: a concrete example

The CogALex-V Shared Task (Santus et al. 2016)

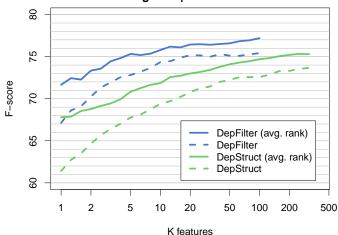
- Aim: better linguistic understanding of DS from identification of specific semantic relations
- ▶ Data: 747 target words with approx. 10 candidate relata each
 - training set: 318 targets, 3054 word pairs
 - test set: 429 targets, 4260 word pairs
- Subtask 1: related vs. unrelated word pairs
 - unrelated pairs are random fillers
 - relatively easy: $F_1 = 79.0\%$ (best system)
- Subtask 2: distinguish between semantic relations
 - ▶ SYN: *w*₂ can be used with same meaning as *w*₁
 - ▶ ANT: w₂ can be used as the opposite of w₁
 - ▶ HYPER: w₁ is a kind of w₂
 - PART_OF: w₁ is a part of w₂
 - ▶ RANDOM: no relation (random word + manual check)
 - relatively hard: $F_1 = 44.5\%$ (best system: deep learning)

DSM evaluation problems: a concrete example Mach 5 at CogALex 2016 (Evert 2016)

- Mach 5 participated in the CogALex-V Shared Task as a traditional "count" (non-neural) DSM
 - ▶ 10-billion-word Web corpus (Schäfer & Bildhauer 2012)
 - syntactic dependencies from C&C parser (Curran et al. 2007)
 - 26.5k target words, up to 300k feature dimensions
 - other parameters set according to Lapesa & Evert (2014)
- Parameter optimization on training data (subtask 1)
- Machine learning on optimized representations (subtask 2)
 - learns relevance weights for 600 latent SVD dimensions
 - best results from combination of different SVD spaces
- Try it yourself: http://www.collocations.de/data/#mach5

< ロ > < 同 > < 回 > < 回 >

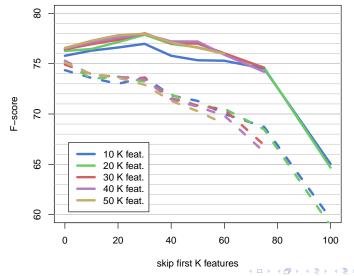
Mach 5: Parameter optimization



Training data | unreduced DSM

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

Mach 5: Parameter optimization



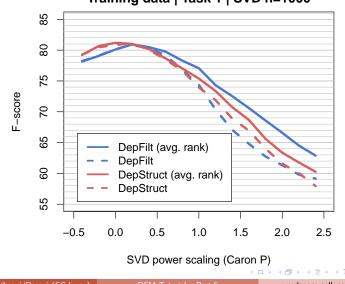
Training data | unreduced DepFilt

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

DSM Tutorial – Part 5

wordspace.collocations.de 12 / 48

Mach 5: Parameter optimization



Training data | Task 1 | SVD n=1000

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

DSM Tutorial – Part 5

wordspace.collocations.de 12 / 48

 $F_1 = 77.88\%$ for related vs. unrelated (best: 79.0%)

However . . .

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

 $F_1 = 77.88\%$ for related vs. unrelated (best: 79.0%)

However . . .

Parameter optimization yields surprising result: best model uses < 50k features with relatively low frequency</p>

 $F_1 = 77.88\%$ for related vs. unrelated (best: 79.0%)

However . . .

- Parameter optimization yields surprising result: best model uses < 50k features with relatively low frequency</p>
- Nearest neighbours are unsatisfactory, e.g. for play: playing (54.1°), star (62.8°), reunite (62.9°), co-star (64.3°), reprise (64.4°), player (66.7°), score (68.5°), audition (69.2°), sing (69.4°), actor (69.5), understudy (69.6), game (70.3), ...

 $F_1 = 77.88\%$ for related vs. unrelated (best: 79.0%)

However . . .

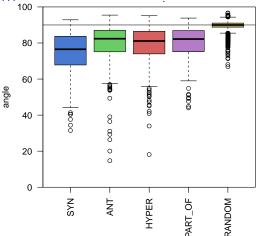
- Parameter optimization yields surprising result: best model uses < 50k features with relatively low frequency</p>
- Nearest neighbours are unsatisfactory, e.g. for play: playing (54.1°), star (62.8°), reunite (62.9°), co-star (64.3°), reprise (64.4°), player (66.7°), score (68.5°), audition (69.2°), sing (69.4°), actor (69.5), understudy (69.6), game (70.3), ...

Why is Mach 5 still doing so well in the task, then?

< □ > < 同 > < 三 > < 三 >

Mach 5: What is going wrong?

A disturbing result



DSM has learned to recognize random word pairs (at 90°)!
 We need better data sets with high-quality distractors!

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

DSM Tutorial – Part 5

wordspace.collocations.de 14 / 48

Outline

The FAST task

Free association norms A problem with standard tasks FAST: Data set and tasks FAST: Experiments Hands-on exercises

Mathematical insights

Matrix factorization Syntagmatic vs. paradigmatic information

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Preprocessing

1. Starting point: EAT (8210 stimuli), USF (5019 stimuli)

E 6 4 E 6

Preprocessing

- 1. Starting point: EAT (8210 stimuli), USF (5019 stimuli)
- 2. Out-of-context POS tagging
 - Annotate items in EAT and USF (stimuli and responses) with part of speech information
 - ► How? Most frequent POS in Web corpus ENCOW: publicly available 10-billion-word Web corpus → replicability

E 6 4 E 6

Preprocessing

- 1. Starting point: EAT (8210 stimuli), USF (5019 stimuli)
- 2. Out-of-context POS tagging
 - Annotate items in EAT and USF (stimuli and responses) with part of speech information
 - ► How? Most frequent POS in Web corpus ENCOW: publicly available 10-billion-word Web corpus → replicability
- 3. Out-of-context lemmatization
 - morpha, a robust morphological analyzer http://users.sussex.ac.uk/~johnca/morph.html
 - Immatization of unknown words based on POS tag

4 1 1 4 1 1 1

Preprocessing

- 1. Starting point: EAT (8210 stimuli), USF (5019 stimuli)
- 2. Out-of-context POS tagging
 - Annotate items in EAT and USF (stimuli and responses) with part of speech information
 - ► How? Most frequent POS in Web corpus ENCOW: publicly available 10-billion-word Web corpus → replicability
- 3. Out-of-context lemmatization
 - morpha, a robust morphological analyzer http://users.sussex.ac.uk/~johnca/morph.html
 - Immatization of unknown words based on POS tag
- 4. Annotation with frequency information
 - frequency lists from ENCOW (lemmatised with morpha)

Item selection

For each stimulus in EAT (8210) and USF (5019) select a:

(multiwords, numbers, closed-class words, and other words that do not occur in ENCOW were discarded)

Item selection

For each stimulus in EAT (8210) and USF (5019) select a:

FIRST: the most common associate response

(multiwords, numbers, closed-class words, and other words that do not occur in ENCOW were discarded)

Item selection

For each stimulus in EAT (8210) and USF (5019) select a:

- FIRST: the most common associate response
- ► HAPAX: a response generated for the target once
 - or twice for USF (hapax responses are omitted there)
 - ► if several HAPAX candidates are available, pick the one whose lemma frequency matches most closely that of FIRST

(multiwords, numbers, closed-class words, and other words that do not occur in ENCOW were discarded)

< ロ > < 同 > < 回 > < 回 > < 回 >

The Free ASsociation Task (FAST) data set

Item selection

For each stimulus in EAT (8210) and USF (5019) select a:

- FIRST: the most common associate response
- ► HAPAX: a response generated for the target once
 - or twice for USF (hapax responses are omitted there)
 - ► if several HAPAX candidates are available, pick the one whose lemma frequency matches most closely that of FIRST
- RANDOM, by randomly picking a word which was among the top 25% associates of another stimulus (and produced at least 5 times). If possible:
 - match lemma frequency of RANDOM and FIRST
 - try to use each RANDOM only once

(multiwords, numbers, closed-class words, and other words that do not occur in ENCOW were discarded)

< ロ > < 同 > < 回 > < 回 >

The FAST data set

Final data set

- EAT subset: 3836 test items + 3774 training items
- USF subset: 2359 test items + 2360 training items
- ▶ Item = (STIMULUS, FIRST, HAPAX, RANDOM)
- Each stimulus and candidate response provided as lowercased word form and POS-disambiguated lemma
 - + ENCOW frequency information
 - +~~# test subjects who produced response
- Download: https://osf.io/cd8ar/ (Evert & Lapesa 2021)
- Included as FAST in package wordspaceEval

The FAST dataset

The new EAT task isn't perfect either ... yet

Guessing POS from corpus doesn't always work

- $\blacktriangleright \text{ e.g. } \textit{fit}_{\textsf{VERB}} \rightarrow \textit{epileptic}_{\textsf{ADJ}}\textit{, aristocracy}_{\textsf{NOUN}} \rightarrow \textit{lords}_{\textsf{NAME}}$
- but very few lemmatization errors (e.g. $daiquiri \rightarrow daiquirus$)

The FAST dataset

The new EAT task isn't perfect either ... yet

Guessing POS from corpus doesn't always work

- ▶ e.g. $fit_{VERB} \rightarrow epileptic_{ADJ}$, $aristocracy_{NOUN} \rightarrow lords_{NAME}$
- ▶ but very few lemmatization errors (e.g. *daiquiri* → *daiquirus*)
- Colloquialisms and British slang
 - e.g. $bod_{NOUN} \rightarrow person_{NOUN}$ (rare in written corpus)
 - but Web corpus has Welsh bod 'to be' mistagged as noun
 - DSM neighbours: yn, hynny, mewn, hwn, gyfer, ..., 49. bloke, techy_{NOUN}, nus, hon, ..., 60. guy, mai, geezer, ...
 - ► another example is mellow_{ADJ} → yellow_{ADJ}

The FAST tasks

Task 1: multiple-choice

- Given a stimulus and a <FIRST, HAPAX, RANDOM> triple, determine which of the three candidates is FIRST.
 - Stimulus: accept, < <u>receive</u>, love, soul>
- Performance: accuracy
- **Baseline**: 33.3%

E 6 4 E 6

The FAST tasks

Task 2: open-vocabulary lexical access

- Given a stimulus (e.g., accept), predict FIRST (receive) out of a candidate set (all FIRST: USF=1197, EAT=1633)
- Performance: two measures
 - Soft accuracy: average over reciprocal rank (1/r) of the true FIRST associate, as a percentage.
 - similar to accuracy of predicting first associate, but awards partial points for almost correct guesses
 - ★ always ≥ top-1 accuracy
 - Log rank: geometric mean of r across all stimuli.
 - \star corresponds to average over log r
 - better differentiation for models that rarely get the correct answer (and hence score low on soft accuracy)

Baselines

- ▶ Soft accuracy: USF=0.64% and EAT=0.49%
- Log rank: USF=442.0 and EAT=602.4

ヘロト ヘヨト ヘヨト

Outline

The FAST task

Free association norms A problem with standard tasks FAST: Data set and tasks FAST: Experiments

Hands-on exercises

Mathematical insights

Matrix factorization Syntagmatic vs. paradigmatic information

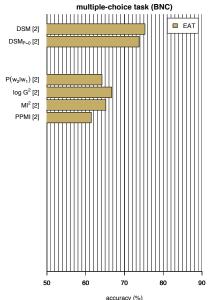
() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- DSMs (second-order): symmetric span of 2 vs. 10 words, other parameters set according to Lapesa & Evert (2014).
 - we experiment with Caron P (Bullinaria & Levy 2012)
 - P = 0 equalizes contributions of SVD dimensions

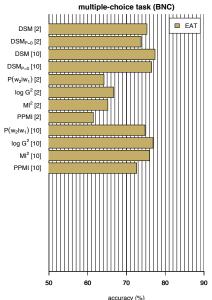
- DSMs (second-order): symmetric span of 2 vs. 10 words, other parameters set according to Lapesa & Evert (2014).
 - we experiment with Caron P (Bullinaria & Levy 2012)
 - P = 0 equalizes contributions of SVD dimensions
- Collocations (first-order): symmetric span, 2 vs. 10 words, with four different association measures (Evert 2008)
 - conditional probability $P(w_2|w_1)$
 - log-likelihood log G² (popular for collocations)
 - $MI^2 = \log_2 \frac{O^2}{E}$ = geometric mean of $P(w_2|w_1)$ and $P(w_1|w_2)$
 - PPMI (popular for DSMs)

- DSMs (second-order): symmetric span of 2 vs. 10 words, other parameters set according to Lapesa & Evert (2014).
 - we experiment with Caron P (Bullinaria & Levy 2012)
 - P = 0 equalizes contributions of SVD dimensions
- Collocations (first-order): symmetric span, 2 vs. 10 words, with four different association measures (Evert 2008)
 - conditional probability $P(w_2|w_1)$
 - log-likelihood log G² (popular for collocations)
 - $MI^2 = \log_2 \frac{O^2}{E}$ = geometric mean of $P(w_2|w_1)$ and $P(w_1|w_2)$
 - PPMI (popular for DSMs)
- Corpus data: for DSMs and collocations
 - British National Corpus: 100M words
 - ENCOW 2014 Web corpus, unique sentences: 8.5G words

- DSMs (second-order): symmetric span of 2 vs. 10 words, other parameters set according to Lapesa & Evert (2014).
 - we experiment with Caron P (Bullinaria & Levy 2012)
 - P = 0 equalizes contributions of SVD dimensions
- Collocations (first-order): symmetric span, 2 vs. 10 words, with four different association measures (Evert 2008)
 - conditional probability $P(w_2|w_1)$
 - log-likelihood log G² (popular for collocations)
 - $MI^2 = \log_2 \frac{O^2}{E}$ = geometric mean of $P(w_2|w_1)$ and $P(w_1|w_2)$
 - PPMI (popular for DSMs)
- Corpus data: for DSMs and collocations
 - British National Corpus: 100M words
 - ENCOW 2014 Web corpus, unique sentences: 8.5G words
- Neural embeddings: pre-trained models
 - ▶ word2vec (Mikolov *et al.* 2013): 100G tokens of Google News
 - ▶ GloVe (Pennington et al. 2014): 6G tokens Wikipeda + Gigaword
 - GloVe: 42G tokens Web data (Common Crawl)
 - FastText (Joulin et al. 2017): 600G tokens Common Crawl

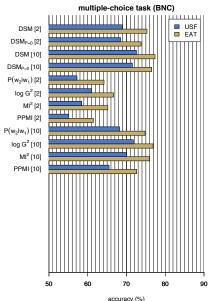


- British National Corpus (100M words)
- EAT subset



 British National Corpus (100M words)

EAT subset

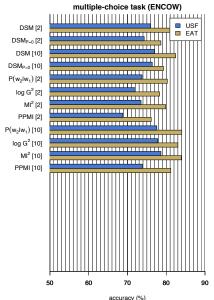


 British National Corpus (100M words)

EAT vs. USF

< □ > < 同 >

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)



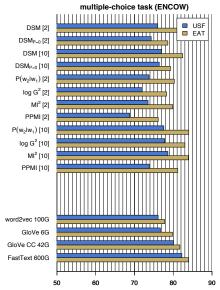
 ENCOW 2014 Web (8.5G words)

EAT vs. USF

© Evert/Lapesa/Lenci/Baroni (CC-by-sa)

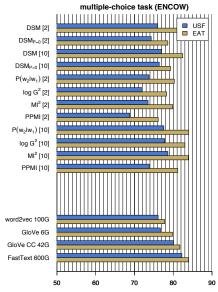
FAST: Experiments

Results: Multiple-choice task



- ENCOW 2014 Web (8.5G words)
- EAT vs. USF
- Embeddings trained on much larger corpora

accuracy (%)

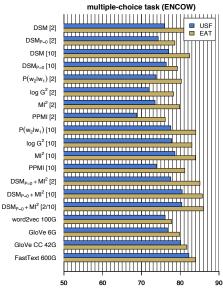


accuracy (%)

- ENCOW 2014 Web (8.5G words)
- EAT vs. USF
- Embeddings trained on much larger corpora
- ▶ Combined 1st-/2nd-order
 - $\blacktriangleright \text{ DSM}_{P=0} + \text{MI}^2$
 - using neighbour rank
 - harmonic mean

FAST: Experiments

Results: Multiple-choice task



accuracy (%)

- ENCOW 2014 Web (8.5G words)
- EAT vs. USF
- Embeddings trained on much larger corpora
- ▶ Combined 1st-/2nd-order
 - $\blacktriangleright \text{ DSM}_{P=0} + \text{MI}^2$
 - using neighbour rank
 - harmonic mean
 - competitive with state-of-the-art embeddings

< □ > < □ > < □ > < □ > < □ > < □ >

		n = 2359	<i>n</i> = 3836
model s	span	USF	EAT
DSM	2	76.01%	81.78%
$DSM_{P=0}$	2	74.31%	78.62%
DSM	10	76.98%	82.46%
$DSM_{P=0}$	10	76.39%	79.30%
$P(w_2 w_1)$	10	77.58%	84.02%
$\log G^2$	10	77.83%	83.00%
MI^2	2	78.64%	83.92%
PPMI	10	73.80%	81.18%
Combined	2	77.58%	85.09%
Combined	10	80.50%	85.71%
Combined	mix	80.41%	85.97%
word2vec	-	76.11%	77.78%
GloVe	_	76.71%	79.80%
GloVe CC	-	80.12%	81.72%
FastText	_	82.24%	83.97%

- ENCOW 2014 Web (8.5G words)
- EAT vs. USF
- Embeddings trained on much larger corpora
- ► Combined 1st-/2nd-order
 - $DSM_{P=0} + MI^2$
 - using neighbour rank
 - harmonic mean
 - competitive with state-of-the-art embeddings

		n = 2359		n = 3836	
		USF		EAT	-
model	span	soft acc.	lrank	soft acc.	Irank
DSM	2	41.54%	6.6	34.53%	9.9
$DSM_{P=0}$	2	42.12%	7.6	34.67%	12.1
DSM	10	42.01%	6.0	35.93%	9.1
$DSM_{P=0}$	10	42.86%	7.1	35.68%	11.6

э

A D N A B N A B N A B N

		n = 2359		n = 3836	
		USF		EAT	
model	span	soft acc.	Irank	soft acc.	lrank
DSM	2	41.54%	6.6	34.53%	9.9
$DSM_{P=0}$	2	42.12%	7.6	34.67%	12.1
DSM	10	42.01%	6.0	35.93%	9.1
$DSM_{P=0}$	10	42.86%	7.1	35.68%	11.6
$P(w_2 w_1)$	10	22.34%	17.0	11.27%	27.1
$\log G^2$	10	37.63%	6.6	34.13%	8.8
MI^2	10	39.73%	6.2	34.01%	8.7
PPMI	10	35.34%	8.2	29.29%	12.2

э

A D N A B N A B N A B N

		n = 2359		n = 3836	
		USF		EAT	
model	span	soft acc.	lrank	soft acc.	Irank
DSM	2	41.54%	6.6	34.53%	9.9
$DSM_{P=0}$	2	42.12%	7.6	34.67%	12.1
DSM	10	42.01%	6.0	35.93%	9.1
$DSM_{P=0}$	10	42.86%	7.1	35.68%	11.6
$P(w_2 w_1)$	10	22.34%	17.0	11.27%	27.1
$\log G^2$	10	37.63%	6.6	34.13%	8.8
MI^2	10	39.73%	6.2	34.01%	8.7
PPMI	10	35.34%	8.2	29.29%	12.2
Combined	2	42.29%	5.5	37.54%	7.0
Combined	10	44.99%	4.8	39.48%	6.5
Combined	l mix	45.36%	4.8	39.48%	6.4

э

A D N A B N A B N A B N

		n = 2359		n = 3836	
		USF		EAT	
model	span	soft acc.	lrank	soft acc.	lrank
DSM	2	41.54%	6.6	34.53%	9.9
$DSM_{P=0}$	2	42.12%	7.6	34.67%	12.1
DSM	10	42.01%	6.0	35.93%	9.1
$DSM_{P=0}$	10	42.86%	7.1	35.68%	11.6
$P(w_2 w_1)$	10	22.34%	17.0	11.27%	27.1
$\log G^2$	10	37.63%	6.6	34.13%	8.8
MI^2	10	39.73%	6.2	34.01%	8.7
PPMI	10	35.34%	8.2	29.29%	12.2
Combined	2	42.29%	5.5	37.54%	7.0
Combined	10	44.99%	4.8	39.48%	6.5
Combined	mix	45.36%	4.8	39.48%	6.4
word2vec	-	38.98%	7.7	30.51%	14.8
GloVe	-	39.22%	7.6	30.19%	13.8
GloVe CC	-	44.01%	5.7	34.26%	10.5
FastText	_	51.00%	4.1	40.34%	7.2

э

イロト イヨト イヨト イヨト

Outline

The FAST task

Free association norms A problem with standard tasks FAST: Data set and tasks FAST: Experiments Hands-on exercises

Mathematical insights

Matrix factorization Syntagmatic vs. paradigmatic information

A B A A B A

< A I

Hands-on exercise

- Solve the FAST multiple-choice task with a DSM
 - eval.multiple.choice() does most of the work for you
 - use details=TRUE to inspect biggest mistakes and explore performance (e.g. wrt. frequency of stimulus and response)
- Can you also make use of first-order (collocation) data?
 hint: the DSM matrix M contains co-occurrence counts
- Advanced: Can you combine DSMs with first-order data?
 hint: use average of DSM and first-order "neighbour" rank
- Advanced: Try to solve the open-choice lexical access task
 no ready-made evaluation function in wordspace yet
- R code in hands_on_day5.R will help you get started!

Bonus task: Reverse free associations

The CogALex-IV shared task (Rapp & Zock 2014)

Reverse multiword free association

- wheel, driver, bus, drive, lorry \rightarrow ?
- ▶ away, minded, gone, present, ill \rightarrow ?

Data: subset of EAT (2000 stimuli each training/test)

E 6 4 E 6

Bonus task: Reverse free associations

The CogALex-IV shared task (Rapp & Zock 2014)

Reverse multiword free association

- wheel, driver, bus, drive, lorry \rightarrow ?
- \blacktriangleright away, minded, gone, present, ill \rightarrow ?
- Data: subset of EAT (2000 stimuli each training/test)
- Very challenging (best: 35% accuracy)
 - open-ended vocabulary (including inflected surface forms!)
 - need for integrating predictions of different stimuli
- And the winner was . . .
 - a system using first-order statistics to re-rank the output of a "standard" DSM (Ghosh *et al.* 2015)
 - ▶ our submission: best 1st-order: 27.7% / best 2nd-order: 14.0%
- Try it yourself: CogALex4.rda

< □ > < □ > < □ > < □ > < □ > < □ >

Outline

The FAST task

Free association norms A problem with standard tasks FAST: Data set and tasks FAST: Experiments Hands-on exercises

Mathematical insights

Matrix factorization

Syntagmatic vs. paradigmatic information

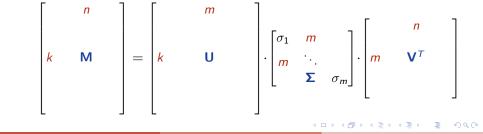
() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Dimensionality reduction as matrix factorization

PCA is based on singular value decomposition (SVD), which factorises any matrix M into

$$\mathsf{M} = \mathsf{U} \mathbf{\Sigma} \mathsf{V}^{\mathcal{T}}$$

where **U** and **V** are orthogonal and Σ is a diagonal matrix of singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_m > 0$



Dimensionality reduction as matrix factorization

- ► Columns \mathbf{a}_i of \mathbf{U} and \mathbf{b}_i of \mathbf{V} (singular vectors) are orthogonal ($\mathbf{a}_i^T \mathbf{a}_j = 0$) and of unit length ($||\mathbf{a}_i|| = 1$)
- Key property: truncated SVD gives best least-squares approximation in *r*-dimensional subspace

$$\mathbf{U}_{r} \mathbf{\Sigma}_{r} \mathbf{V}_{r}^{T} = \begin{bmatrix} \vdots & \vdots \\ \vdots & \vdots \\ \mathbf{a}_{1} & \cdots & \mathbf{a}_{r} \\ \vdots & \vdots \\ \vdots & \mathbf{U}_{r} & \vdots \end{bmatrix} \cdot \begin{bmatrix} \sigma_{1} & & \\ & \ddots \\ & \mathbf{\Sigma}_{r} & \sigma_{r} \end{bmatrix} \cdot \begin{bmatrix} \cdots & \cdots & \mathbf{b}_{1} & \cdots & \cdots \\ \mathbf{V}_{r}^{T} & \vdots & \\ \cdots & \cdots & \mathbf{b}_{r} & \cdots & \cdots \end{bmatrix}$$

Dimensionality reduction as matrix factorization

Truncated SVD as orthogonal projection

$$\mathbf{MV}_r = \mathbf{U}_r \mathbf{\Sigma}_r = \begin{bmatrix} \vdots & & \vdots \\ \sigma_1 \mathbf{a}_1 & \cdots & \sigma_r \mathbf{a}_r \\ \vdots & & \vdots \end{bmatrix}$$

→ method="svd" in dsm.projection()

 σ₁² ≥ σ₂² ≥ ... = amount of distance information (i.e. variance of M) captured by each latent dimension

Section 2020) Catch up on the mathematics with Deisenroth et al. (2020)

- Non-negative matrix factorization (NMF)
 - **U** and **V** are stochastic matrices $(\mathbf{a}_i \ge 0 \text{ and } \|\mathbf{a}_i\|_1 = 1)$
 - but no orthogonality constraints
 - cross-entropy instead of least-squares approximation
 - ► iterative algorithm with random initialisation for optimal rank-r approximation (≠ sequence of ordered components)
 - ▶ see Lee & Seung (2001) and Boutsidis & Gallopoulos (2008)

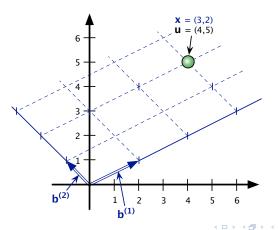
- Non-negative matrix factorization (NMF)
 - **U** and **V** are stochastic matrices $(\mathbf{a}_i \ge 0 \text{ and } \|\mathbf{a}_i\|_1 = 1)$
 - but no orthogonality constraints
 - cross-entropy instead of least-squares approximation
 - ► iterative algorithm with random initialisation for optimal rank-r approximation (≠ sequence of ordered components)
 - ▶ see Lee & Seung (2001) and Boutsidis & Gallopoulos (2008)

$$\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T} = \sigma_{1}\mathbf{a}_{1}\mathbf{b}_{1}^{T} + \sigma_{2}\mathbf{a}_{2}\mathbf{b}_{2}^{T} + \sigma_{3}\mathbf{a}_{3}\mathbf{b}_{3}^{T} + \dots$$

- \mathbf{a}_i = probability distribution of words in *i*-th topic
- **b**_{*i*} = distribution of topic across documents

イロト イヨト イヨト イヨト

NMF can be seen as non-orthogonal projection:
 UΣ = coordinates of projected points wrt. basis V



- Levy et al. (2015, 213) show that word2vec embeddings implicitly factorize a shifted PPMI matrix
 - sigmoid loss function, weighted towards high frequencies
 - similarly, GloVe (Pennington *et al.* 2014) factorizes matrix of conditional probabilities with a frequency-weighted least-squares approximation

- Levy et al. (2015, 213) show that word2vec embeddings implicitly factorize a shifted PPMI matrix
 - sigmoid loss function, weighted towards high frequencies
 - similarly, GloVe (Pennington *et al.* 2014) factorizes matrix of conditional probabilities with a frequency-weighted least-squares approximation

Explore matrix factorization techniques
 hands_on_day5_matrix_factorization.R

Outline

The FAST task

Free association norms A problem with standard tasks FAST: Data set and tasks FAST: Experiments Hands-on exercises

Mathematical insights

Matrix factorization

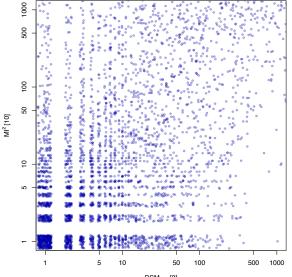
Syntagmatic vs. paradigmatic information

(B)

э

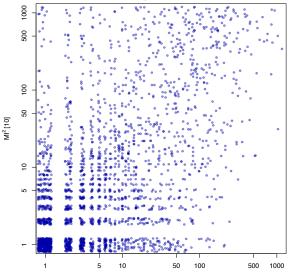
A D N A B N A B N A B N

EAT: Open-choice task



DSM_{P=0} [2]

DSM Tutorial - Part 5



USF: Open-choice task

DSM_{P=0} [2]

 1^{st} -order = syntagmatic vs. 2^{nd} -order = paradigmatic?

1st- and 2nd-order models less complementary than expected
 relatively small benefit from combination

▶ But intuition not completely wrong (L2/R2):

- DSM: duckling \rightarrow piglet, chick, duck, cygnet, hatchling, ...
- MI²: duckling \rightarrow ugly, chick, duck, swan, fluffy, roast, ...

 1^{st} -order = syntagmatic vs. 2^{nd} -order = paradigmatic?

1st- and 2nd-order models less complementary than expected
 relatively small benefit from combination

- ▶ But intuition not completely wrong (L2/R2):
 - DSM: duckling \rightarrow piglet, chick, duck, cygnet, hatchling, ...
 - MI²: duckling \rightarrow ugly, chick, duck, swan, fluffy, roast, ...

Possible explanation for the overlap under (many) simplifying assumptions (sentence span, raw cooc freqs, ...)

- Consider a term-context matrix F with very small contexts
 - e.g. **tweets**, sentences, paragraphs
 - or aligned sentence pairs (Sahlgren & Karlgren 2005)
- No feature weighting or normalisation
- ▶ **F** is binary, i.e. $f_{ij} \in \{0, 1\}$

• What is the cosine similarity of \mathbf{f}_i and \mathbf{f}_j ?

▲ 国 ▶ | ▲ 国 ▶

Image: A matrix

• What is the cosine similarity of \mathbf{f}_i and \mathbf{f}_j ?

•
$$\mathbf{f}_i^T \mathbf{f}_j = O = \text{co-occurrence frequency}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Image: A matrix

• What is the cosine similarity of \mathbf{f}_i and \mathbf{f}_j ?

•
$$\mathbf{f}_i^T \mathbf{f}_j = O = \text{co-occurrence frequency}$$

•
$$\|\mathbf{f}_i\|_2 = \sqrt{R}$$
 = marginal frequency of term *i*

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Image: A matrix

• What is the cosine similarity of \mathbf{f}_i and \mathbf{f}_j ?

•
$$\mathbf{f}_i^T \mathbf{f}_j = O = \text{co-occurrence frequency}$$

• $\|\mathbf{f}_i\|_2 = \sqrt{R} = \text{marginal frequency of term } i$
• $\|\mathbf{f}_j\|_2 = \sqrt{C} = \text{marginal frequency of term } j$

э

A B b A B b

< □ > < 同 >

• What is the cosine similarity of \mathbf{f}_i and \mathbf{f}_j ?

Cosine similarity in F = first-order association

$$\cos \alpha = \frac{\mathbf{f}_i^T \mathbf{f}_j}{\|\mathbf{f}_i\|_2 \cdot \|\mathbf{f}_j\|_2} = \frac{O}{\sqrt{RC}} \sim \sqrt{\mathsf{MI}^2}$$

< □ > < 凸

- Construct a term-term DSM with textual context = tweet
- Recall: co-occurrence frequency $m_{ij} = \mathbf{f}_i^T \mathbf{f}_j$

E 6 4 E 6

< □ > < 凸

- Construct a term-term DSM with textual context = tweet
- Recall: co-occurrence frequency $m_{ij} = \mathbf{f}_i^T \mathbf{f}_j$
- Symmetric co-occurrence matrix M can be derived from F:

$\mathbf{M} = \mathbf{F}\mathbf{F}^{\mathcal{T}}$

4 1 1 4 1 1 1

- Construct a term-term DSM with textual context = tweet
- Recall: co-occurrence frequency $m_{ij} = \mathbf{f}_i^T \mathbf{f}_j$
- Symmetric co-occurrence matrix M can be derived from F:

$\mathbf{M} = \mathbf{F}\mathbf{F}^{\mathcal{T}}$

Compare SVD of the two matrices

$$\begin{split} \mathbf{F} &= \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathcal{T}} \qquad \mathbf{M} = \mathbf{F} \mathbf{F}^{\mathcal{T}} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathcal{T}} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\mathcal{T}} \\ &= \mathbf{U} \boldsymbol{\Sigma}^2 \mathbf{U}^{\mathcal{T}} \end{split}$$

- Construct a term-term DSM with textual context = tweet
- Recall: co-occurrence frequency $m_{ij} = \mathbf{f}_i^T \mathbf{f}_j$
- Symmetric co-occurrence matrix **M** can be derived from **F**:

$$M = FF^T$$

Compare SVD of the two matrices

$$\begin{split} \mathbf{F} &= \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathcal{T}} \qquad \mathbf{M} = \mathbf{F} \mathbf{F}^{\mathcal{T}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathcal{T}} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathcal{T}} \\ &= \mathbf{U} \mathbf{\Sigma}^2 \mathbf{U}^{\mathcal{T}} \end{split}$$

- dimensionality reduction: $P_r(\mathbf{F}) = \mathbf{U}_r \mathbf{\Sigma}_r$ vs. $P_r(\mathbf{M}) = \mathbf{U}_r \mathbf{\Sigma}_r^2$
- **F** is equivalent to **M** with Caron $P = \frac{1}{2}$

イロト イポト イモト イモト

References I

- Boutsidis, C. and Gallopoulos, E. (2008). SVD based initialization: A head start for nonnegative matrix factorization. *Pattern Recognition*, **41**, 1350–1362.
- Bullinaria, John A. and Levy, Joseph P. (2012). Extracting semantic representations from word co-occurrence statistics: Stop-lists, stemming and SVD. *Behavior Research Methods*, **44**(3), 890–907.
- Clark, H.H. (1970). Word associations and linguistic theory. In J. Lyons (ed.), *New horizons in linguistics*. Harmondsworth: Penguin.
- Curran, James; Clark, Stephen; Bos, Johan (2007). Linguistically motivated large-scale NLP with C&C and Boxer. In *Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Posters and Demonstrations Sessions*, pages 33–36, Prague, Czech Republic.
- Deisenroth, Marc Peter; Faisal, A. Aldo; Ong, Cheng Soon (2020). Mathematics for Machine Learning. Cambridge University Press. https://mml-book.github.io/.
- Evert, Stefan (2008). Corpora and collocations. In A. Lüdeling and M. Kytö (eds.), *Corpus Linguistics. An International Handbook*, chapter 58, pages 1212–1248. Mouton de Gruyter, Berlin, New York.

< □ > < □ > < □ > < □ > < □ > < □ >

References II

- Evert, Stefan and Lapesa, Gabriella (2021). FAST: A carefully sampled and cognitively motivated dataset for distributional semantic evaluation. In *Proceedings of the 25th Conference on Computational Natural Language Learning (CoNLL 2021)*, pages 588–595, Online. Data set: https://osf.io/cd8ar/.
- Ghosh, Urmi; Jain, Sambhav; Paul, Soma (2015). A two-stage approach for computing associative responses to a set of stimulus words. In Z. (eds.) (ed.), *Proceedings of the 4th Workshop on Cognitive Aspects of the Lexicon,.*
- Hare, Mary; Jones, Michael; Thomson, Caroline; Kelly, Sarah; McRae, Ken (2009). Activating event knowledge. *Cognition*, **111**(2), 151–167.
- Herdağdelen, Amaç; Erk, Katrin; Baroni, Marco (2009). Measuring semantic relatedness with vector space models and random walks. In *Proceedings of the* 2009 Workshop on Graph-based Methods for Natural Language Processing (TextGraphs-4), pages 50–53, Suntec, Singapore.
- James, W (1890). The principles of psychology. New York: Dover.
- Joulin, Armand; Grave, Edouard; Bojanowski, Piotr; Mikolov, Tomas (2017). Bag of tricks for efficient text classification. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 427–431, Valencia, Spain.

A D N A B N A B N A B N

References III

- Kiss, G.R; Armstrong, C.; Milroy; Piper, J. (1973). An associative thesaurus of english and its computer analysis. In R. B. Aitken and N. Hamilton-Smith (eds.), *The computer and literary studies*. Edinburgh University Pres.
- Lapesa, Gabriella and Evert, Stefan (2013). Evaluating neighbor rank and distance measures as predictors of semantic priming. In *Proceedings of the ACL Workshop* on Cognitive Modeling and Computational Linguistics (CMCL 2013), pages 66–74, Sofia, Bulgaria.
- Lapesa, Gabriella and Evert, Stefan (2014). A large scale evaluation of distributional semantic models: Parameters, interactions and model selection. *Transactions of the Association for Computational Linguistics*, **2**, 531–545.
- Lapesa, Gabriella; Evert, Stefan; Schulte im Walde, Sabine (2014). Contrasting syntagmatic and paradigmatic relations: Insights from distributional semantic models. In Proceedings of the Third Joint Conference on Lexical and Computational Semantics (*SEM 2014), pages 160–170, Dublin, Ireland.
- Lee, Daniel D. and Seung, H. Sebastian (2001). Algorithms for non-negative matrix factorization. In *Advances in Neural Information Processing Systems 13: Proceedings of the NIPS 2000 Conference*, pages 556–562. MIT Press.

イロト イポト イヨト イヨト

References IV

- Levy, Omer; Goldberg, Yoav; Dagan, Ido (2015). Improving distributional similarity with lessons learned from word embeddings. *Transactions of the Association for Computational Linguistics*, **3**, 211–225.
- Mikolov, Tomas; Chen, Kai; Corrado, Greg; Dean, Jeffrey (2013). Efficient estimation of word representations in vector space. In *Workshop Proceedings of the International Conference on Learning Representations 2013.*
- Mitchell, Tom M.; Shinkareva, Svetlana V.; Carlson, Andrew; Chang, Kai-Min; Malave, Vicente L.; Mason, Robert A.; Just, Marcel Adam (2008). Predicting human brain activity associated with the meanings of nouns. *Science*, **320**, 1191–1195.
- Murphy, Brian; Baroni, Marco; Poesio, Massimo (2009). EEG responds to conceptual stimuli and corpus semantics. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 619–627, Singapore.
- Nelson, Douglas L.; McEvoy, Cathy L.; Schreiber, Thomas A. (2004). The university of south florida free association, rhyme, and word fragment norms. *Behavior Research Methods, Instruments, & Computers.*
- Padó, Sebastian and Lapata, Mirella (2007). Dependency-based construction of semantic space models. *Computational Linguistics*, 33(2), 161–199.
- Pennington, Jeffrey; Socher, Richard; Manning, Christopher D. (2014). GloVe: Global vectors for word representation. In *Proceedings of EMNLP 2014*.

(日)

References V

- Rapp, Reinhard and Zock, Michael (2014). The cogalex-iv shared task on the lexical access problem. In *Proceedings of the 4th Workshop on Cognitive Aspects of the Lexicon*,, pages 1–14. Zock/Rapp/Huang (eds.).
- Sahlgren, Magnus and Karlgren, Jussi (2005). Automatic bilingual lexicon acquisition using random indexing of parallel corpora. *Natural Language Engineering*, **11**, 327–341.
- Santus, Enrico; Gladkova, Anna; Evert, Stefan; Lenci, Alessandro (2016). The CogALex-V shared task on the corpus-based identification of semantic relations. In Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V), pages 69–79, Osaka, Japan.
- Schäfer, Roland and Bildhauer, Felix (2012). Building large corpora from the web using a new efficient tool chain. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC '12), pages 486–493, Istanbul, Turkey. ELRA.
- Wettler, Manfred; Rapp, Reinhard; Sedlmeier, Peter (2005). Free word associations correspond to contiguities between words in texts*. *Journal of Quantitative Linguistics*, **12**(2–3), 111–122.

< □ > < □ > < □ > < □ > < □ > < □ >