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Introduction

The basic idea here is very simple:

word co-occurrence statistics from large text corpora

=> certain aspects of word meaning / lexical semantics

This leaves many important questions, such as:

Which word co-occurrence statistics are best?

Does it depend on which aspects of word meaning we require?
What are the limitations of this idea?

Do we need to go beyond simple word co-occurrence statistics?
If so, what exactly do we need to do?

Does any of this tell us anything about human language acquisition?
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Simple Word Co-occurrence Statistics

target word

Take a large corpus of language usage and count the word co-occurrences.

N4

context words

For each target word ¢ we can count how many times each context word ¢ appears
within a window of a certain type and size around it, and thus compute a vector of

conditional probabilities p(cl?).

These result in the basic vector space that we hope will constitute a useful

representation of lexical semantics.



How Important Are The Details?

Early studies indicated that getting the details right was crucial.

Bullinaria & Levy, Behavior Research Methods, 2007 considered:
Varying the context window type
Varying the context window size
Varying the vector dimensionality
Varying the corpus size
Varying the corpus quality
Different semantic tasks
Different distance metrics

Different vector components (other than conditional probabilities)

I’ll now summarize the key results obtained using an 89.6M word BNC corpus



Four Different Tasks

TOEFL (Test of English as a Foreign Language) — (Landauer & Dumais, 1997)
Pick which of four given words is closest to the target word — implemented using

semantic distance comparisons. [80 target words]

Distance Comparison — (Bullinaria & Levy, 2007)
Tests larger scale structure of the semantic space by comparing distances to

semantically related words against those for ten random control words. [200]

Semantic Categorization — (Patel, Bullinaria & Levy, 1997)
Compares distances between target words and their correct semantic category

centers against distances to the centers of other categories. [530]

Syntactic Categorization — (Levy, Bullinaria & Patel, 1998)
Compares distances between target words and their correct syntactic category

centers against distances to the centers of other categories. [1200]
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Four Different Vector Components

Raw Conditional Probabilities (P)
p(clt)

Ratios of Conditional Probabilities (R)

p(clt)

r(c,t)=
(@b P(C)

Pointwise Mutual Information (PMI)

p(clt)
p(c)

i(c,t)=log

Positive Pointwise Mutual Information (PPMI)
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Best Results Across Component Types and Distance Metric
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Best Results Across Component Types and Distance Metric
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Best Results Across Component Types and Distance Metric
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Best Results Across Component Types and Distance Metric

SYNT. CLUSTER
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Statistical Reliability — PPMI Cos — Halves BNC Corpus (44.8M)
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Statistical Reliability — PPMI Cos — Smaller Corpora (4.6M)
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Effect of Window Size and Shape — PPMI Cos, Prob Eucl
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Effect of Window Type and Vector Dimensionality — PPMI Cos
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Effect of Window Type and Vector Dimensionality — PPMI Eucl
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Effect of Corpus Size — PPMI Cos
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Performance For Smaller Corpus — 4.6M — PPMI Cos
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For smaller corpora, statistical reliability issues arise and the performance falls

In these cases the optimal window size may be larger to compensate
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Effect of Corpus Quality — PPMI Cos
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Corpus quality is also crucial — just increasing the size is not enough!
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General Conclusions So Far?

Drawing general conclusions from such a small sample is dangerous, but it looks
like the best semantic representations arise from:

Vectors of Positive Pointwise Mutual Information

Using the standard Cosine distance measure

Very small windows, just one context word each side of the target

As many vector components as possible

The biggest and highest quality corpus available
The obvious way to proceed now is to:

Find a bigger and better corpus

Test the semantic vectors on more tasks

Understand the limitations of the approach
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The Lexical Semantics Workshop Challenge

The ukWaC corpus — 1984.4M words derived from web-pages
~20 times the size of the BNC corpus
IM words with a frequency of five or more
Categorization tasks
44 concrete nouns — 6 hand-labelled semantic categories
45 verbs — 9 hand-labelled semantic categories
CLUTO Clustering Toolkit
Direct k-way clustering algorithm
Default parameter settings
Does PPMI Cosine still give good results with the same optimal parameters?

Are the limitation of the approach clearer with the bigger corpus and new tasks?
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Measures of Clustering Quality

Two measures of clustering quality are built into CLUTO - both compare the

clusters against hand-crafted class labels:

Entropy
k q i i
n w1 n. n
E=" —E E = # —log—
. ’ logg .. m, “n,
Purity
k
1 .
E—f P=—ma n;)
r=1 n ’ nr I

for clustering of n words, with r labelling k clusters, and i labelling g classes.

Both range from O to 1. Perfect clusters have entropy O and purity 1.
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Concrete
Noun
Clustering

Six clusters:

Purity
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Comments on the Concrete Noun Clustering

Good clustering is obtained, right down to individual word pairs.

One understandable “mistake” — ‘chicken’ in a ‘foodstuffs’ cluster rather than in

the ‘animal’ cluster.

The six main clusters do not line up with the handcrafted clusters — ‘fruit’ and
‘vegetable’ clusters are combined, and the ‘tools’ split. This is responsible for
the poor purity and entropy scores. And asking for different numbers of clusters

doesn’t help.

Nevertheless, it is worth asking if we get the same dependence on Vector

Dimensionality, Window Size and Corpus Size as in the earlier study?

Then, what about Verbs and other tasks such as TOEFL?
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Effect of Vector Dimensionality
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Effect of Window Size
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Effect of Corpus Size
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Verb
Clustering

Five clusters:

Purity
=0.644

Entropy
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ukWaC TOEFL Performance
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General Conclusions So Far?

Drawing general conclusions from such a small sample is dangerous, but it
seems that vectors of simple word co-occurrence statistics lead to good semantic

representations for concrete nouns, but not for verbs.

One current technical problem is that small word sets lead to sparse clusters, but

larger word sets are difficult to manage computationally.

There are also more fundamental problems with the merging of vectors for

different word meanings and different valid dimensions of semantics.

Perhaps, before dealing with these issues, we should first improve the current
small concrete noun set by removing outliers and increasing/evening the class

sizes, and optimise the semantic vector generation process on that?

Varying the noun set: ‘chicken” — ‘hen’, adding ‘pork’ and ‘beef’, ...
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Making Further Progress?

There are clearly fundamental limitations to the simple co-occurrence statistics

approach for generating semantic representations

But there remain many potential avenues for future work:
Machine learning to split merged representations?
Discriminant analysis for different aspects of semantics?
Totally different co-occurrence statistics?

Other ideas from other speakers?
There is certainly much scope for future progress in this field...

That’s all for today!
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