Qualia Structures and their Impact on the Noun Categorization Task

Sophia Katrenko Pieter Adriaans

University of Amsterdam, the Netherlands

ESSLLI workshop, August 6 2008

Outline

2

Introduction & Motivation

Concrete noun categorization task

- Data
- Qualia structures
- Evaluation
- Error analysis

Previous Work

- Lexical representation/categorization in cognitive science
 - a lexical concept is represented by a set of features (Rapp & Caramazza, 1991; Gonnerman et. al., 1997)
 - lexical concepts are atomic representations and "conceptual relations ... can be captured by the sets of inferential relations drawn from elementary and complex concepts" (Almeida, 1999), the thesis of conceptual atomism (Fodor, 1990)
- Categorization in computational lingustics
 - word-space models (Sahlgren, 2006; Lenci, Baroni, and others)

Data Oualis

valuation

Data

• 44 concrete nouns to be categorized in

Data Qualia structure Evaluation Error analysis

Data

- 44 concrete nouns to be categorized in
 - 2 categories (natural kind and artifact)

Data Qualia structures Evaluation Error analysis

Data

- 44 concrete nouns to be categorized in
 - 2 categories (natural kind and artifact)
 - 3 categories (vegetable, animal and artifact)

Data Qualia structures Evaluation Error analysis

Data

- 44 concrete nouns to be categorized in
 - 2 categories (natural kind and artifact)
 - 3 categories (vegetable, animal and artifact)
 - 6 categories (green, fruitTree, bird, groundAnimal, vehicle and tool) the entity derived from the origin.

Data Qualia structures Evaluation Error analysis

Generative Lexicon Theory

Pustejovsky (1998) proposed a linguistically motivated approach to modelling categories. Semantic descriptions use 4 levels of linguistic representations such as

- argument structure ("specification of number and a type of logic arguments")
- event structure ("definition of the event type of an expression")
- qualia structure ("a structural differentiation of the predicative force for a lexical item")
- lexical inheritance structure ("identification of how a lexical structure is related to other structures in the type lattice")

Data Qualia structures Evaluation Error analysis

Generative Lexicon Theory (cont'd)

$$\begin{bmatrix} \alpha \\ \text{ARGSTR} : \begin{bmatrix} \text{ARG1} : x \\ \cdots \end{bmatrix} \\ \text{EVSTR} : \begin{bmatrix} \text{EV1} : e_1 \\ \cdots \end{bmatrix} \\ \text{QUALIA} : \begin{bmatrix} \text{CONST} : \text{ what } x \text{ is made of} \\ \text{FORMAL} : \text{ what } x \text{ is} \\ \text{TELIC} : \text{ function of } x \\ \text{AGENTIVE} : \text{ how } x \text{ came into being} \end{bmatrix}$$

Data Qualia structures Evaluation Error analysis

Generative Lexicon Theory (cont'd)

What features/properties are important to classify the concrete nouns correctly? According to the Generative Lexicon Theory, lexical expressions are represented by the following roles:

 formal (how to distinguish a given object from the other, is-a information)

$$\textit{Formal}(\lambda x[\alpha(x)]) = \lambda x[Q(x)] \leftrightarrow \alpha \subseteq Q$$

• constitutive (part-whole information, parts of the object)

 $Const([\alpha(x)]) = \lambda y[Q(y)] \leftrightarrow \forall x[\alpha(x) \rightarrow \exists y[Q(y) \land made_of(x, y)]]$

Data Qualia structures Evaluation Error analysis

Generative Lexicon Theory (cont'd)

• telic (a purpose of an object, what it is used for)

$$\begin{aligned} & \textit{Telic}(\lambda x[\alpha(x)]) = \lambda y \lambda e \exists x[\phi(e, y, x)] \leftrightarrow \\ & \lambda y \forall x \forall e \forall y[\psi_{\alpha}(e, y, x) > \exists e'[\phi(e', y, x) \land e < e']] \end{aligned}$$

• agentive (origin, how it came into being)

 $\begin{array}{l} \textit{Agentive}(\lambda x[\alpha(x)]) = \lambda e[\psi(e)] \leftrightarrow \\ \forall x, e[\alpha(e, x) \rightarrow \exists e' \exists y[\psi(e') \land e' \prec e \land \textit{make}(e', y, x)]] \end{array}$

Data Qualia structures Evaluation Error analysis

Generative Lexicon Theory (cont'd)

a.
$$\begin{bmatrix} \mathbf{snowball} \\ \operatorname{ARGSTR} = \begin{bmatrix} \operatorname{ARG1} = x \\ \operatorname{D-ARG1} = y \end{bmatrix} \\ \operatorname{QUALIA} = \begin{bmatrix} \operatorname{FORMAL} = ball(x) \\ \operatorname{CONST} = snow(y) \end{bmatrix} \end{bmatrix} \Longrightarrow$$

b. $\lambda x[ball(x) \land const(x) = \exists y[snow(y)]]$

Approach (cont'd)

Data Qualia structures Evaluation Error analysis

How can we acquire qualia information? Some of the methods proposed in the past:

- Hearst, 1992 (hyperonymy)
- Girju, 2007 (part-whole relations)
- Cimiano and Wenderoth, 2007
 - predefined patterns for all 4 roles
 - ranking results according to some measures
- Yamada et al., 2007
 - fully supervised
 - focuses on acquisition of telic information

Data Qualia structures Evaluation Error analysis

Approach (cont'd)

We make use of the patterns defined by Cimiano and Wenderoth, 2007

role	pattern
	x_NN is_VBZ (a_DT the_DT) kind_NN of_IN
formal	x_NN is_VBZ
	x_NN and_CC other_JJ
	x_NN or_CC other_JJ
	purpose_NN of_IN (a_DT)* x_NN is_VBZ
telic	purpose_NN of_IN p_NNP is_VBZ
	(a_DT the_DT)* x_NN is_VBZ used_VVN to_TO
	p_NNP are_VBP used_VVN to_TO

Table: Patterns: some examples

Data Qualia structures Evaluation Error analysis

Approach (cont'd)

role	pattern
	(a_DT the_DT)* x_NN is_VBZ made_VVN (up_RP)*of_IN
constitutive	(a_DT the_DT)* x_NN comprises_VVZ
	(a_DT the_DT)* x_NN consists_VVZ of_IN
	p_NNP are_VBP made_VVN (up_RP)*of_IN
	p_NNP comprise_VVP
	to_TO * a_DT new_JJ x_NN
	to_TO * a_DT complete_JJ x_NN
agentive	to_TO * new_JJ p_NNP
-	to_TO * complete_JJ p_NNP
	a_DT new_JJ x_NN has_VHZ been_VBN
	a_DT complete_JJ x_NN has_VHZ been_VBN

Table: Patterns: some examples

Approach (cont'd)

- Categorization procedure consists of the following steps
 - extraction of the passages containing candidates for the role fillers using patterns (Google, 50 snippets per pattern)

Approach (cont'd)

- Categorization procedure consists of the following steps
 - extraction of the passages containing candidates for the role fillers using patterns (Google, 50 snippets per pattern)
 - PoS tagging of all passages

Approach (cont'd)

- Categorization procedure consists of the following steps
 - extraction of the passages containing candidates for the role fillers using patterns (Google, 50 snippets per pattern)
 - PoS tagging of all passages
 - actual extraction of the candidates for the role fillers using patterns

Approach (cont'd)

- Categorization procedure consists of the following steps
 - extraction of the passages containing candidates for the role fillers using patterns (Google, 50 snippets per pattern)
 - PoS tagging of all passages
 - actual extraction of the candidates for the role fillers using patterns
 - building a word-space model where rows correspond to the words provided by the organizers of the challenge and columns are the qualia elements for a selected role (clustering using CLUTO toolkit)

Results

Data Qualia structures Evaluation Error analysis

clustering	entropy	purity
2-way	0.59	0.80
3-way	0.00	1.00
6-way	0.13	0.89
2-way _{>1}	0.70	0.77
3-way _{>1}	0.14	0.96
6-way _{>1}	0.23	0.82

Table: Performance using formal role only

Data Qualia structures **Evaluation** Error analysis

What are the most representative elements in the clusters?

The similarity between elements in a cluster is measured as follows:

$$z_l = \frac{\mathbf{s}_j^l - \mu_l^l}{\delta_l^l} \tag{1}$$

 s_j^l stands for the average similarity between the object *j* and the rest objects in the same cluster, μ_l^l is the average of s_j^l values over all objects in the *l*th cluster, and δ_l^l is the standard deviation of the similarities.

Data Qualia structures **Evaluation** Error analysis

What are the most representative elements in the clusters?

- the core of the cluster respresenting tools is formed by chisel followed by knife and scissors as they have the largest internal z-score (the same cluster wrongly contains rocket but according to the internal z-score, it is an outlier (with the lowest z-score in the cluster))
- *bowl, cup, bottle* and *kettle* all have the lowest internal *z*-scores in the cluster of vehicles. The core of the cluster is formed by a *truck* and *motorcycle*

Data Qualia structures Evaluation Error analysis

Descriptive and discriminative features: 3-way clustering

CI	Features
VEG	fruit (41.3%), vegetables (28.3%), crop (14.6%),
	food (3.4%), plant (2.5%)
ANI	animal (43.3%), bird (23.0%), story (6.6%),
	pet (3.5%), waterfowl (2.4%)
ART	tool (31.0%), vehicle (15.3%), weapon (5.4%),
	instrument (4.4%), container (3.9%)
VEG	fruit (21.0%), vegetables (14.3%), animal (11.6%),
	crop (7.4%), tool (2.5%)
ANI	animal (22.1%), bird (11.7%), tool (10.1%),
	fruit (7.4%), vegetables (5.1%)
ART	tool (15.8%), animal (14.8%), bird (7.9%),
	vehicle (7.8%), fruit (6.8%)

Results: telic role

Data Qualia structures Evaluation Error analysis

seed	extractions
helicopter	to rescue
rocket	to propel
chisel	to cut, to chop, to clean
hammer	to hit
kettle	to boil, to prepare
bowl	to serve
pencil	to draw, to create
spoon	to serve
bottle	to store, to pack

Table: Some extractions for the *telic* role

Data Qualia structures Evaluation Error analysis

Results: constitutive role

seed	extractions
helicopter	a section, a body
rocket	a section, a part, a body
motorcycle	a frame, a part, a structure
truck	a frame, a segment, a program, a compartment
telephone	a tranceiver, a handset, a station
kettle	a pool, a cylinder
bowl	a corpus, a piece
pen	an ink, a component
spoon	a surface, a part
chisel	a blade
hammer	a handle, a head
bottle	a container, a component, a wall, a segment, a piece

Table: Some extractions for the constitutive role

Results per role

Data Qualia structures Evaluation Error analysis

role	clustering	entropy	purity	comments
formal	6-way	0.13	0.89	all 44 words
agentive	6-way	0.54	0.61	43 words
constitutive	6-way	0.51	0.61	28 words

Table: Performance using one role only

Data Qualia structures Evaluation Error analysis

Results: formal and agentive roles combined

Sophia Katrenko Qualia Structures for the Noun Categorization Task

Data Qualia structures Evaluation Error analysis

The best performance

The best results are obtained by combining formal role with the agentive one

clustering	entropy	purity
2-way	0.59	0.80
3-way	0.00	1.00
6-way	0.09	0.91

Table: Performance using formal and agentive roles

Interestingly, the worst performance on 2-way clustering is achieved by combining formal and constitutive roles (entropy of 0.92, purity of 0.66)

Error analysis

- incorrect PoS tagging/sentence boundary detection
- patterns do not always provide correct extractions/features ("chicken and other stories")
- Ambiguous words ("in fact, scottish gardens are starting to see many more butterflies including peacocks")
- Features that do not suffice to discriminate among all categories

Data Qualia structures Evaluation Error analysis

Error analysis (cont'd)

- 6-way clustering always fails to discriminate between tools and vehicles well. Containers (a bowl, a kettle, a cup, a bottle) are always placed in the cluster of vehicles (instead of tools). This is the only type of errors for the 6-way clustering.
- In 2-way clustering, vegetables are usually not considered natural objects

Conclusions

- formal role is already sufficient for identification of vegetables, animals and artifacts (perfect clustering)
- a combination of formal and agentive roles provides the best performance on 6-way clustering (in line with Pustejovsky, 2001)
- on combination of roles accounts well for natural objects and artifacts

Possible directions?

- filtering out the false extractions (by hand, ranking) and re-clustering
- changing a set of patterns (ideally, learning patterns)

Possible directions?

- filtering out the false extractions (by hand, ranking) and re-clustering
- changing a set of patterns (ideally, learning patterns)

Thanks!