Performance of HAL-like word space models on semantic categorization tasks.

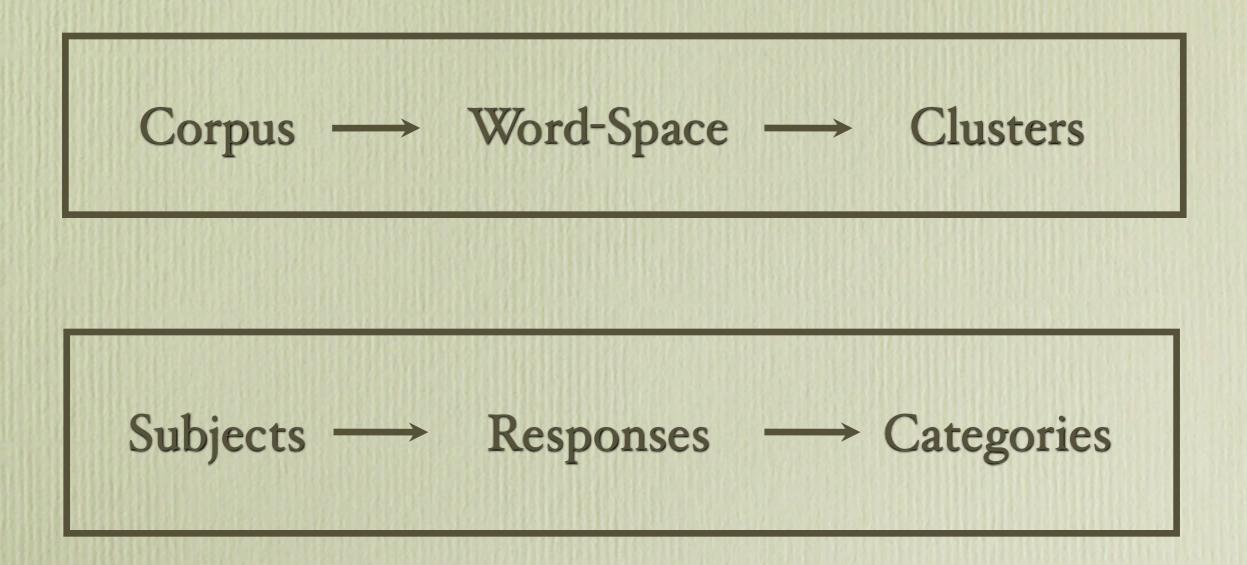
> Cyrus Shaoul Chris Westbury

Department of Psychology, University of Alberta

Additions to Marco's List

- COALS (completed in 2005, submitted in 2007) Rohde, Plaut & Gonnerman
- BEAGLE (2006,2007) Jones & Mewhort
 - Some Fortran source code now available
 - New work on Semantic Distinctiveness of contexts

What are we working with?



Clusters vs. Categories

• For the purposes of this talk:

- Clusters are groupings of points in a word-space, each point representing the contextual information for that word. Grouping is based on the geometric relationship between points.
- Categories are groupings of words gathered from studies of language behavior.

 Both are groupings of words, but is there any point of comparing categories to clusters?

Theoretical Concern

- What does a close match between a cluster and a category mean?
- If there is a correspondence between the human semantic space organization and a model's representation of word meaning and there is a correspondence between clustering algorithms and the human faculty for word categorization then there is reason to hope that this task is valid.

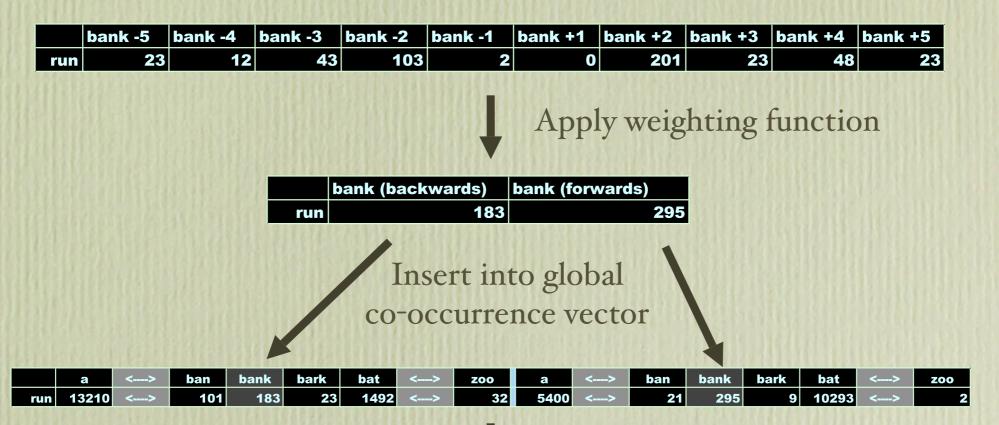
My model and how it works

• HAL-like

• No factorization or PCA

• Used USENET and GIGAWORD corpora

How HAL works:



Insert this vector into the global co-occurrence matrix

	а	<>	ban	bank	bark	bat	<>	z 00	а	<>	ban	bank	bark	bat	<>	z 00
rub	342	<>	2	2	34	3	<>	3	1322	<>	0	0	1	0	<>	0
rump	3454	<>	0	0	0	0	<>	2	1233	<>	0	2	0	0	<>	0
run	13210	<>	101	183	23	1492	<>	32	5400	<>	21	295	9	10293	<>	432
runner	65242	<>	34	33	0	4523	<>	0	4321	<>	0	2	4	22	<>	344
runs	24556	<>	5	546	0	5312	<>	0	3455	<>	0	2	24	43	<>	23

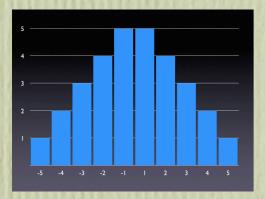
Changes we have made to HAL

- Made changes to the choice of the vectors used (Original HAL: vectors with the greatest variance. Our model: vectors with with greatest frequency.)
- Normalize vectors by using a frequency ratio.
- Added a neighborhood threshold, restricting the number of neighbors to those within a standardized distance away.

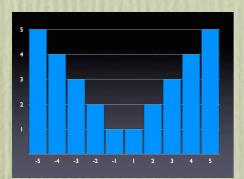
Personal Research Interest

- Can a word's neighborhood density help predict the time it takes to access the word's meaning?
- Does the setting of parameters of the HAL model change its ability to make this prediction?

Weighing Schemes

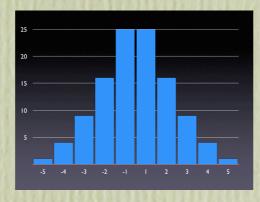


Linear Ramp

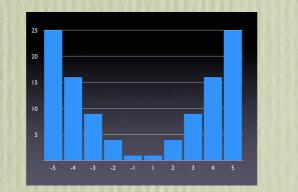


Inverse Ramp

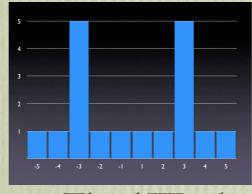

```
Second Word
```



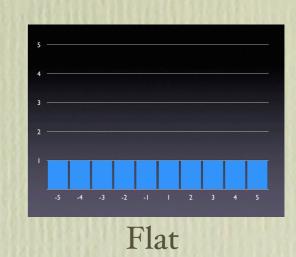
Exponential Ramp

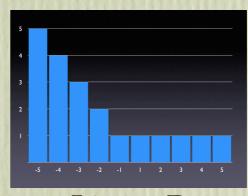


Inverse Exponential Ramp

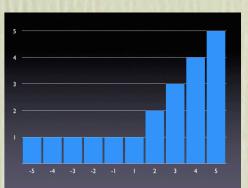


Third Word

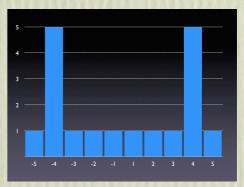




Linear Ramp Behind



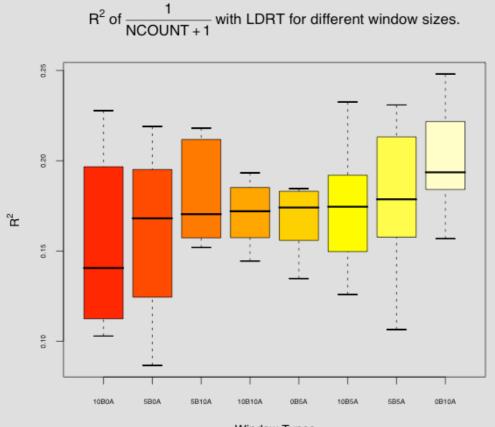
Linear Ramp Ahead



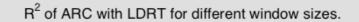
Fourth Word

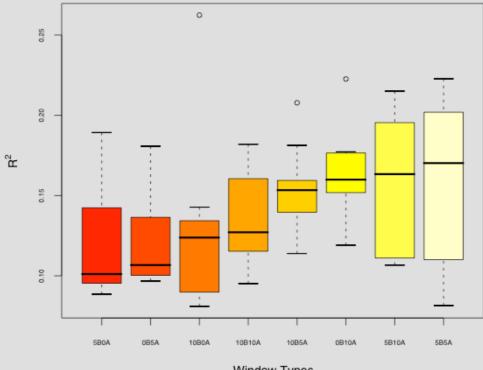
Lexical and Semantic Decision Results

- Each combination of parameter settings produces differing measures of neighborhood density
- Some parameter sets give higher correlations with RT than others.
- Performed a search through parameter space.
- Best LDRT predictor: Inverse Ramp, 10 words behind, 5 words ahead.



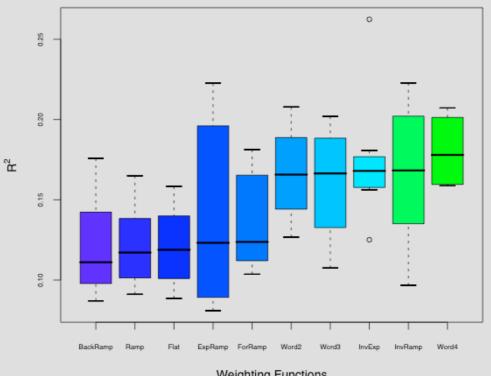
Window Types (Values were collapsed across weighting functions.)





Window Types (Values were collapsed across weighting functions.)

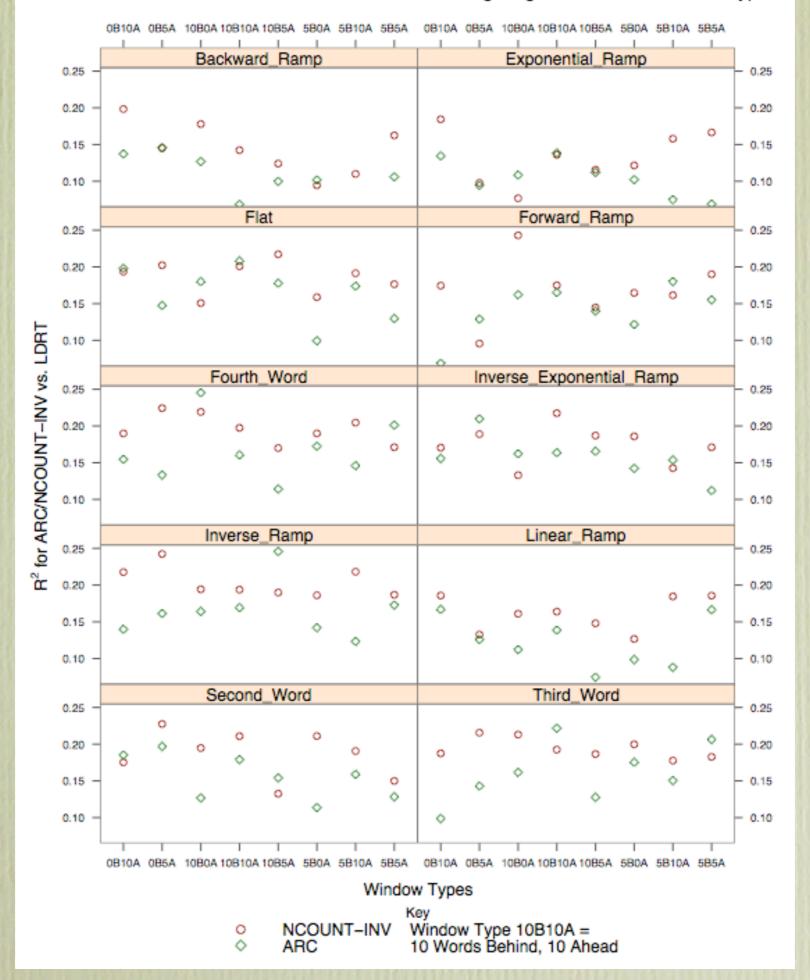
R² of ARC with LDRT for different weighting functions.



Weighting Functions (Values were collapsed across window sizes.)

Weighting Functions (Values were collapsed across window sizes.)

R² of ARC/NCOUNT-INV with LDRT for different weighting functions and window types.



ESSLLI 2008: Primary Goals

- Investigate the clusters produced by my HAL-like model to see how they compared to the lexical categories in the tasks.
- Compare the quality of the clusters when using different parameter settings to the model.

Tasks

• Attempted:

- Categorization
- Salient Property Generation

• Did not attempt:

Modeling free association

Concrete Noun Clustering

• Results:

Original HAL Params	Cluster Entropy	Cluster Purity	
2-way	0.931	0.545	
3-way	0.844	0.523	
6-way	0.77	0.409	

LDRT Optm Params	Cluster Entropy	Cluster Purity
2-way	0.981	0.545
3-way	0.869	0.523
6-way	0.719	0.386

Concrete Noun Clustering Error Analysis: HAL Confusion Matrix

Cluster	Bird	Tree	Green Veg	Ground Animal	Tool	Vehicle
#0	0	0	0	0	1	0
#1	0	0	0	1	0	0
#2	0	1	0	0	0	0
#3	3	0	0	0	0	0
#4	1	1	0	1	6	3
#5	3	2	5	6	6	4

Concrete Noun Clustering

Error Analysis: Optimized Params Confusion Matrix

Cluster	Bird	Tree	Green Veg	Ground Animal	Tool	Vehicle
#0	0	0	0	0	Chisel	0
#1	0	Chérry	/ 0	0	0	0
#2	Owl Eagle	0	0	0	0	0
#3	Penguin	0	0	0	1	1
#4	2	3	5	3	6	6
#5	2	0	0	5	5	0

 Best purity and entropy results for this task compared to all other tasks.

Results

Original HAL Params	Cluster Entropy	Cluster Purity	
2-way	0.84	0.6	
Optimized LDRT Params	Cluster Entropy	Cluster Purity	
2-way	0.647	0.725	

Error Analysis: HAL Params Confusion Matrix

Cluster	High Imageability	Low Imageability	Intermediate Imageability	
#0	15	6	5	
#1	1	9	4	

Error Analysis: Optimized Params Confusion Matrix

Cluster	High Imageability	Low Imageability	Intermediate Imageability	
#0	15	Mystery	6	
#1	Adhe	14	3	

Verb Clustering



Original HAL Params	Cluster Entropy	Cluster Purity	
5-way	0.755	0.467	
9-way	0.572	0.422	

LDRT Optm Params	Cluster Entropy	Cluster Purity	
5-way	0.715	0.511	
9-way	0.709	0.333	

Verb Clustering

Error Analysis: HAL Params Confusion Matrix

Cluster	Exchange	Motion	Change State	Body	Cognition
#0	1	0	0	0	0
#1	0	0	0	2	5
#2	1	1	0	1	1
#3	3	6	3	2	2
#4	0	8	2	5	2

Verb Clustering

Error Analysis: Optimized Params Confusion Matrix

Cluster	Exchange	Motion	Change State	Body	Cognition
#0	Pay	0	0	0	0
#1	0	0	0	0	Evaluate
#2	Breathe	0	0	Lend	0
#3	2	4	2	9	8
#4	1	11	3	0	1

Property Generation

- Can the model find properties of words? (DUCK and FLIES)
- Used HiDEx to generate 200 closest neighbors for all words in the list.
- All precision averages were under 0.02
- Neighborhoods from our HAL-like models did not contain many property terms.

Summary

- Clustering was most human-like for the Abstract-Concrete Noun Discrimination task, using our optimized parameter set.
- Our models did not accurately predict categorization on the other tasks.

Future Directions

- There may be a different parameter set for our model that will produce better clusters.
- New project: search through parameter space again, and look for the best parameter settings for these tasks.
- Question: What does this say about model's generalizability?

Dank u wel.

Danke schön.

- This work was supported by the National Science and Engineering Research Council of Canada.
- Thanks to TAPoR, AICT and Westgrid for their support.
- Geoff Hollis and Emilio Gagliardi also contributed time and effort to this project.

Contact Info

- cyrus.shaoul@ualberta.ca
- chrisw@ualberta.ca
- <u>http://www.psych.ualberta.ca/</u> <u>~westburylab/</u>
- All data for clustering analysis is available.
- Please contact me for the open source release of HiDEx.