Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Does Latent Semantic Analysis Reflect Human Associations?

Tonio Wandmacher¹, Ekaterina Ovchinnikova¹ and Theodore Alexandrov²

¹Institute of Cognitive Science University of Osnabrück {eovchinn@uos.de, twandmac@uos.de} ²Center for Industrial Mathematics University of Bremen theodore@math.uni-bremen.de

Lexical Semantics Workshop at ESSLLI 2008 - Hamburg

August 7, 2008

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Disclaimer

- 1. We do not want to improve the methodology
- 2. We do not want to investigate human associative memory

3. We do not claim our results to be optimal (better look at J. Bullinaria's work)

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Disclaimer

- 1. We do not want to improve the methodology
- 2. We do not want to investigate human associative memory
- 3. We do not claim our results to be optimal (better look at J. Bullinaria's work)

 But we do want to get a deeper understanding of what a distributional method like LSA can and cannot contribute to human semantic processing

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Introduction & Method

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

LSA: Basics

Original goal: Improving Information Retrieval, nowadays used for nearly everything, e.g.

- Text summarization (Wade-Stein&Kintsch 2001)
- Cognitive Modelling (Landauer&Dumais 1997)
- Metaphor comprehension (Kintsch 2000)
- Evaluating student essays (Graesser et al. 2001)

Typical claims

"[...] the similarity estimates derived by LSA are not simple contiguity frequencies, co-occurrence counts, or correlations in usage, but depend on a powerful mathemati- cal analysis that is capable of correctly inferring much deeper relations." (Landauer et al. 1998, p. 263)

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

LSA: Example

Nearest neighbors for 'Olympics':

- All kinds of semantic and associative relations represented
- Looks quite like a human being's mind map
- So: To what extent do LSA-generated similarities correspond to human associations?

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

LSA: Method

- Based on a co-occurrence matrix (term×document or term×term)
- Reduction by Singular Value Decomposition (noise reduction, revealing "latent" structures)
- Comparing term vectors by cosine (length norm.)

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

LSA: Method (2)

 Using the Infomap toolkit (v. 0.8.6)¹, we construct a term×term-matrix (80.000×3.000)

Advantages of term×term models

- Matrix does not grow with corpus (\rightarrow more training data)
- Fixed co-occurrence window; no problems with defining 'document' (sentence?, paragraph?, book?)
- Training corpus: 108M words from *The Times* and *The Guardian* (1996 - 1998)
- SVD reduction to 300 dims
- ► Four spaces using co-occurrence windows of ±5, ±25, ±50, ±75 words

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Tasks and Results

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Free Association Tasks

Free Association

First word(s) coming to a person's mind after being presented a cue word.

Three tasks:

- 1. **Discriminating** between three classes of association strengths
- 2. Measuring **correlation** between human association strengths and LSA similarity
- 3. Predicting the most frequent human response
- Datasets are based on the Edinburgh Associative Thesaurus (EAT)

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Free Association Tasks

Task 1 Discrimination

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Discrimination Task

Task

Discriminating between three classes of association strengths:

- FIRST: strongly associated pairs (>50% of the responses)

- HAPAX: association pairs produced by a single subject
- RANDOM: random cue-target combinations

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Discrimination Task

Task

Discriminating between three classes of association strengths:

- FIRST: strongly associated pairs (>50% of the responses)
- HAPAX: association pairs produced by a single subject
- RANDOM: random cue-target combinations

Results for 299 of the 300 suggested pairs:

	Right	Wrong	Accuracy
FIRST (th=0.23)	50	50	50%
HAPAX (th=0.02)	63	32	68%
RANDOM	68	17	78.2%
Total (F/H/R)	181	119	60.33%
HAPAX or RANDOM	189	11	94.5%
FIRST/HAPAX or RANDOM	239	61	79.66 %

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Free Association Tasks

Task 2 Correlation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Correlation Task

Task

Measuring correlation between human association strengths and LSA similarity.

► Cue-target pairs were selected by stratified sampling → human association strength [0,1] is uniformly distributed.

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Correlation Task

Task

Measuring correlation between human association strengths and LSA similarity.

► Cue-target pairs were selected by stratified sampling → human association strength [0,1] is uniformly distributed.

Results for 239 of the 240 suggested pairs:

- Pearson correlation of 0.353
- Kendall correlation coefficient of 0.263
- Both are significant with a p-value<0.01</p>

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Correlation Task (2)

Contrasting results:

- In (Cramer, Waltinger & Wandmacher, to appear) we measured LSA correlation with semantic relatedness judgements by human subjects
- 35 subjects to rated 320 word pairs on a 5-level scale (" *Is X related to Y*?")
- LSA space was trained on 101M words from German newspaper text (Süddeutsche Zeitung)

▶ Here, a *Pearson* correlation of **0.62** was measured

Why are the results so different ?

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Correlation Task (2)

Contrasting results:

- In (Cramer, Waltinger & Wandmacher, to appear) we measured LSA correlation with semantic relatedness judgements by human subjects
- 35 subjects to rated 320 word pairs on a 5-level scale (" *Is X related to Y*?")
- LSA space was trained on 101M words from German newspaper text (Süddeutsche Zeitung)

▶ Here, a *Pearson* correlation of **0.62** was measured

Why are the results so different ?

Well, we don't know yet ...

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Free Association Tasks

Task 3 Response Prediction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Response Prediction

Task

Predicting the most frequent human response.

- Cue condition: Assoc. strength for 1st response at least 3 times higher than for 2nd response.
- Evaluation by calculating the average LSA rank of the correct response (Rank_{min} = 100).

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Response Prediction

Task

Predicting the most frequent human response.

- Cue condition: Assoc. strength for 1st response at least 3 times higher than for 2nd response.
- Evaluation by calculating the average LSA rank of the correct response (Rank_{min} = 100).
- Results for 199 of the 200 suggested pairs
- The resulting average rank of the correct response is 51.89

Target rank	1	2	3	4	5	6	7-99	100
Frequency	31	10	7	5	6	7	43	89

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Co-occurrence Window

- Size of the co-occurrence window is a crucial factor for establishing semantic relatedness
- Previous works used rather "small" windows:

Lund & Burgess, 1996:	± 8 words
Rapp, 2002:	± 2 words
Cederberg & Widdows, 2003:	± 15 words
Peirsman, Heylen & Geeraerts, 2008:	± 1 to ± 10 words

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Co-occurrence Window

- Size of the co-occurrence window is a crucial factor for establishing semantic relatedness
- Previous works used rather "small" windows:

Lund & Burgess, 1996:	± 8 words
Rapp, 2002:	± 2 words
Cederberg & Widdows, 2003:	± 15 words
Peirsman, Heylen & Geeraerts, 2008:	± 1 to ± 10 words

 \blacktriangleright We created 4 spaces using $\pm 5, \pm 25, \pm 50, \pm 75$ words

	±5	± 25	± 50	± 75
Correlation (r)	0.254	0.326	0.347	0.354
Disc. (Acc.)	54.67	55.67	58.67	60.33
Pred. (Av. Rank)	62.61	54.11	52.69	51.89

- Larger windows seem to work better in all 3 tasks
- Similar results for word prediction
- Closer investigation needed

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Disagreement Analysis

Quantitative Analysis

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Correlation Analysis

 Plotting human and LSA similarity values for correlation data (ordered by human values)

- LSA easily establishes low association
- ► No correlation for higher half of human values → Correct estimation of high association strength is complicated

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Prediction Analysis

- ▶ **Human**: Strength of 1st response at least 3 times higher than strength of 2nd
 - **LSA**: No large difference between 1^{st} and 2^{nd} values
- ► Human: When the 1st response strengths (≥0.65) increase, the strengths of the 2nd responses decrease LSA: no such effect observed

Human response strengths vs. LSA values for 1st and 2nd response

200

э

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Relation Analysis

 Word pairs of the prediction data were manually categorized wrt. their semantic relation; average rank was determined for each sub-group

relation	av. rank	# pairs	example
opposition	24.42	31	female, male
co-hyponymy	40.50	6	july, august
near-synonymy	46.98	47	incorrect, wrong
predarg.	49	13	eating, food
hypo-/hyperonymy	53.32	22	finch, bird
mero-/holonymy	58.43	21	deck, ship
topical rel.	62.65	31	prefect, school
collocation	77.59	17	wizard, oz
attribute-class rel.	85.86	7	sugar, sweet

LSA is good at predicting oppositions and co-hyponyms

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Disagreement Analysis

Qualitative Analysis

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Pairs with the highest LSA values

cue	target	human	LSA
ha	ha	0.66	1.00
inland	revenue	0.31	0.84
four	five	0.45	0.78
question	answer	0.71	0.78
good	bad	0.80	0.77
grammar	school	0.53	0.74
below	above	0.47	0.73
daughter	son	0.63	0.72
vehicle	car	0.82	0.72
parish	church	0.66	0.70
boy	girl	0.78	0.65

 LSA strongly associates oppositions (15 from 19 oppositions found in the correlation task data sets have got LSA values >0.22)

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Typical disagreements

LSA similarity is symmetric, human associations are not

cue	target	human	LSA
wrong	right	0.72	0.493
right	wrong	0.42	0.493

LSA is corpus-dependent (here: newspaper ads)

cue	target	human	LSA	NN for cue
				flavour (0.39)
				soup (0.37)
fresh	lobster	0.01	0.2	vegetables (0.37)
				<i>potato</i> (0.36)
				chicken (0.36)

Best assoc. from EAT for 'fresh': air, fish, new, stale, fresher

Does Latent Semantic Analysis Reflect Human Associations?	Typica
Wandmacher, Ovchinnikova & Alexandrov	
Introduction & Method	► LS
Tasks & Results	the
Disagreement Analysis	СІ
Conclusion & Future Work	
	sne

Typical disagreements (2)

 LSA underestimates associations between concepts and their salient properties

cue	target	human	LSA	NN for cue
				snowfalls (0.65)
				winds (0.624)
snow	white	0.408	0.09	weather (0.612)
				slopes (0.61)
				temperature (0.608)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Typical disagreements (3)

 LSA generates neighbors of the prominent meaning only and suppresses other domains (cf. also Wandmacher, 2005)

cue nurse	targe hospita	t hum a al 0.150	in LS 6 0.62	 A NN for cue nurses (0.64) hospital (0.627) 27 patient (0.597) doctors (0.554) patients (0.525)
cue eve	target adam	human 0.567	LSA 0.024	NN for cue christmas (0.657) festive (0.535) yuletide (0.456) festivities (0.453) presents (0.408)

Does Latent
Semantic Analysis
Reflect Human
Associations?

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Typical disagreements (4)

 LSA underestimates collocations that consist of elements without meaning overlaps

cue	target	human	LSA	NN for cue
				gun (0.54)
				<i>pistol</i> (0.50)
shotgun	wedding	0.402	0.06	shooting (0.46)
				shotguns (0.45)
				firearms (0.44)

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Conclusion

- LSA is able to predict human associations to some extent, but it does not account for all aspects of associative memory
- LSA estimates for weakly associated terms are much closer to those of humans than for strongly associated terms
- Larger co-occurrence windows (of around ±75 words) provide better results in all tasks
- Oppositions and co-hyponyms are rather well predicted, however collocations and attribute-class relations are not
- Most disagreements between LSA and human evaluations seem to be corpus-related
- Polysemous terms: LSA generates neighbors of the prominent meaning only and tends to suppress other domains

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

Future work

 Solving the question why the results for the 'semantic relatedness' data were so different

- Trying out different (and larger) corpora
- Performing these tasks using more techniques (dimension reduction, order of similarity etc.)

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreemen Analysis

Conclusion & Future Work

The end

<ロ> <0</p>

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

The end

Thank you for your attention!

Wandmacher, Ovchinnikova & Alexandrov

Introduction & Method

Tasks & Results

Disagreement Analysis

Conclusion & Future Work

The end

Thank you for your attention! Questions?

Our results can be found on: www.ikw.uos.de/~twandmac/FA-Results-WOA.zip