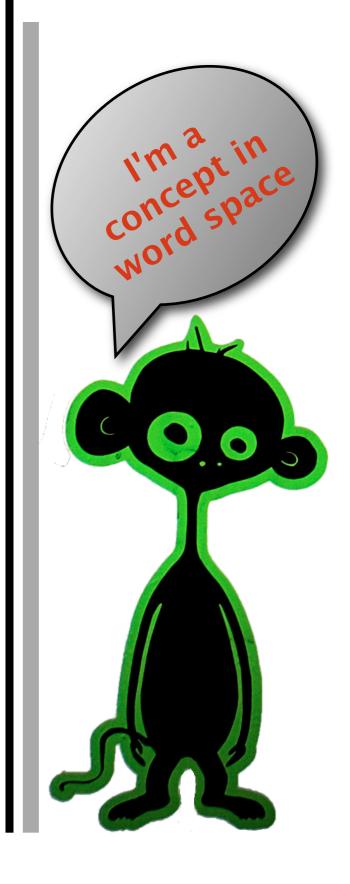
CSMs Today & Tomorrow

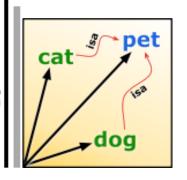
Workshop Summary and Final Discussion

Marco Baroni


CIMEC, University of Trento

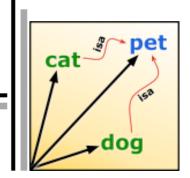
Stefan Evert

CogSci, University of Osnabrück


Alessandro Lenci

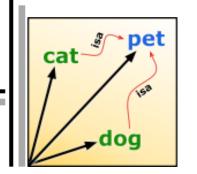
University of Pisa

Workshop summary


Distributional Lexical Semantics Workshop @ ESSLLI 2008

We would like to thank the speakers & all participants for an exciting, fruitful and enjoyable workshop!

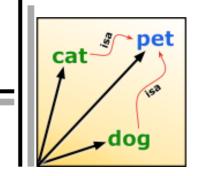
Task 1: Semantic categorization


Distributional Lexical Semantics Workshop @ ESSLLI 2008

	nouns/6	nouns/3	nouns/2	abstract (hi/lo)	abstract (3-way)	verbs/9	verbs/5	
Bullinaria	.886/.120	worse?				.644/.527		
Shaoul (HAL)	.386/.719	.523/.869	.545/.981	.725/.647		.333/.709	.511/.715	
Van de Cruys (bag of words)	.682/.334	.705/.539	.545/.983	1.0/0.0	.700/.605	.556/.442	.600/.463	NL
Van de Cruys (syntactic)	.841/.173	1.0/0.0	1.0/0.0	1.0/0.0	.750/.367	.556/.408	.667/.464	NL
Katrenko/Ad. (formal role)	.89x/.13x	1.0/0.0	.80/.59					Qualia
Katrenko/Ad. (formal+agent)	.91x/.09x	1.0/0.0	.80/.59					Qualia
Versley (decorrelation)	.795/.196	Web 1T5				.711/.280	Web 1T5	
Versley (best feature)	.841/.172	ukWaC				.733/.253	Web 1T5	
Versley (comb. feat.)	.977/.034					.778/.218		
Peirsman et al. (bag of words)	.82x/.23x	.84x/.34x	.86x/.55x	1.0/0.0		.56x/.41x	.69x/.39x	

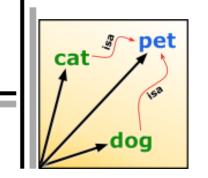
w = 5...7

Task 2: Free association norms



Distributional Lexical Semantics Workshop @ ESSLLI 2008

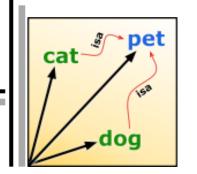
	FIRST/other	FIRST/HAPAX/ RANDOM	correlation	prediction (mean rank)	
Peirsman et al. (bag of words)				47.0	w = 5
Wandmacher et al. (LSA on term/term)	79.7%	60.3%	.353/.263	51.9	w = 75
FOO (first-order assoc.)	86.3%		.209/.170	30.0	
	t-score		(MI)	t-score	
baseline	66.6%	33.3%			


FOO model using Dice measure achieves mean rank 28.0 in prediction task; for 49% of cues, the correct target is among the first 5 suggestions.

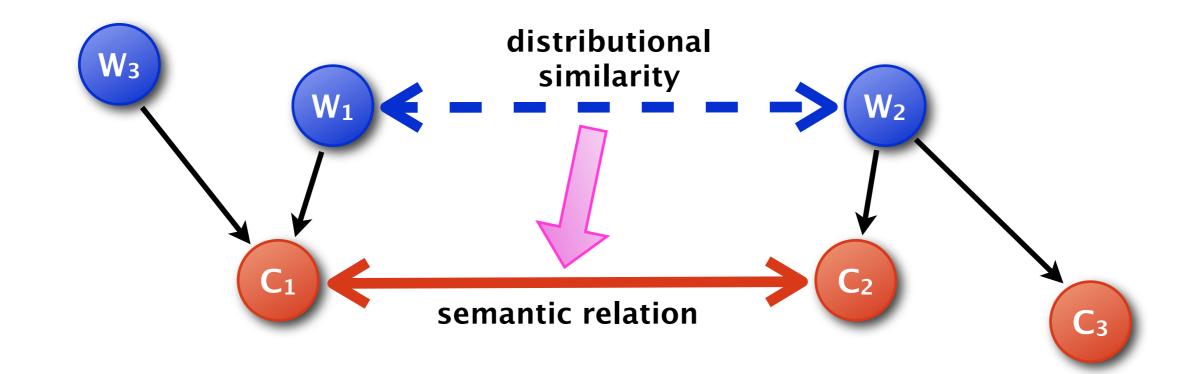
Task 3: Property generation

- Seems to be a difficult task for CSMs very few results
- ☆ Shaoul (HAL): precision < 2%
 </p>
- ☆ Barbu: precision 50%–80%, but not a proper CSM
 - direct property extraction with manually selected patterns
 - first-order associations work well for adjectives and verbs
 - but not evaluated against shared task gold standard!
- Marco's results on shared task data:
 - 4.1% SVD on term-term matrix (Rapp 2003, 2004)
 - 8.8% Attribute-Value model (Almuhareb & Poesio 2004)
 - 14.1% Dependency Vectors (Padó & Lapata 2007)
 - 23.9% StruDEL (Baroni et al., to appear)

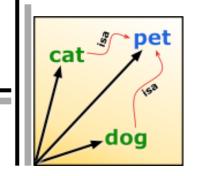
Some important distinctions


Distributional Lexical Semantics Workshop @ ESSLLI 2008

words vs. concepts

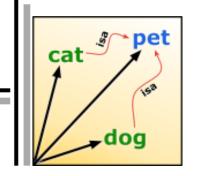

and distributed representation vs. distributional modelling

- theoretical discussion vs. experimental results
- key questions for distributional semantics


Lexical semantics or conceptual meaning?

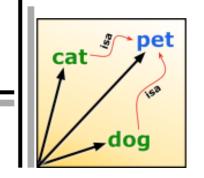
- Are we interested in the meaning of words or in concepts?
 - minimalist lexical semantics: word = pointer to concept
 - plus some genuinely linguistic meaning aspects
 (e.g. different usage and connotations of near-synonyms)
 - no function words (→ formal semantics)
- Word space hypothesis: distributional similarity between words reflects semantic relations between concepts

Word Space: Holographic memory vs. CSM


- Distributed, non-symbolic representation of meaning
 - → holographic memory
 - Which facets of "meaning" (wrt. concepts, words, utterances, ...) can be expressed in a distributed, non-symbolic representation?
 - Primarily addressed by theoretical discussions
- - To what extent can the meaning of a word/concept be determined from its distribution in text?
 - Which models and parameters are best suited for this purpose?
 - Primarily addressed with experimental methods (→ shared task)

Key questions for distributional semantics

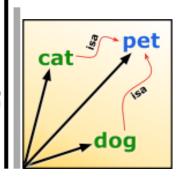
cat dog


- 1. What kind of information is encoded by a CSM?
 - problem: it is not clear what exactly we are looking for
- 2. Which aspects of lexical/conceptual meaning can be captured by holographic memory and CSMs?
 - problem: no good theory of concepts and lexical semantics
 - theoretical discussions needed to guide empirical research
- 3. What is the best CSM for a particular semantic task?
 - choice of model, base corpus, context definition, parameters, ...
 - immediate result of shared task & workshop papers
- 4. Are linguistic data sufficient to build CSM representations?
 - which aspects of meaning can be learned from purely linguistic input, and which aspects require an embodied CSM?

Key questions for distributional semantics

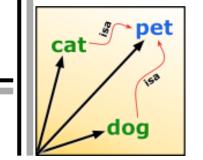
- 1. What kind of information is encoded by
 - problem: it is not clear what exactly we empirical
- 2. Which aspects of lexical/conceptual meaning can be captured by holographic memory and CSMs?
 - problem: no good theory of concepts and lext theoretical
 - theoretical discussions needed to guide empirical less arch
- 3. What is the best CSM for a particular semantic task?
 - choice of model, base corpus, context technical arameters, ...
 - immediate result of shared task & works
- 4. Are linguistic data sufficient to build CSM representations?
 - which aspects of meaning carring the description of the second second

Where to go from here



Distributional Lexical Semantics Workshop @ ESSLLI 2008

Topic for the following discussion: the next steps


- Continue series of workshops on distributional semantics?
 - volunteers needed!
- Competitive (or friendly) evaluation campaign?
 - e.g. at SemEval 2010 (deadline for Eol: 21 Sep 2008)

Final discussion

Stefan's position statement

- www We need a battery of standardised tests for CSMs
 - cognitively plausible representation must work for all tasks!
 - shared tasks from this workshop could be part of this battery
 - add other types of tasks, different languages, etc.
 - large-scale evaluation campaign would make data sets available
- Develop common software platform to facilitate research
 - allows easy experiments with different CSMs and parameter settings, automatically running entire battery of tests
 - platform implements different uses of underlying representation for different types of tests (with automatic tuning)
 - SemanticVectors (Widdows), HIDeX (Shaoul),
 DependencyVectors (Padó), ...
 - Python-based system for easy experimentation?