Distributional Semantics – A Practical Introduction (ESSLLI 2016 & 2018)
Distributional Semantics – A Practical Introduction
Introductory course at ESSLLI 2016, Bolzano, August 15–19, 2016 and ESSLLI 2018, Sofia, August 6–10, 2018
Course description
Distributional semantic models (DSM) – also known as “word space” or “distributional similarity” models – are based on the assumption that the meaning of a word can (at least to a certain extent) be inferred from its usage, i.e. its distribution in text. Therefore, these models dynamically build semantic representations – in the form of high-dimensional vector spaces – through a statistical analysis of the contexts in which words occur. DSMs are a promising technique for solving the lexical acquisition bottleneck by unsupervised learning, and their distributed representation provides a cognitively plausible, robust and flexible architecture for the organisation and processing of semantic information.
This course aims to equip participants with the background knowledge and skills needed to build different kinds of DSM representations – from traditional “count” models to neural word embeddings – and apply them to a wide range of tasks. It is accompanied by practical exercises with the user-friendly R software package wordspace and various pre-built models.
Lecturer: Stefan Evert (FAU Erlangen-Nürnberg)