Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision Next revision Both sides next revision | ||
course:material [2018/07/26 11:48] schtepf |
course:material [2018/08/24 16:59] schtepf [Neural word embeddings] |
||
---|---|---|---|
Line 15: | Line 15: | ||
- Use the installer built into RStudio (or the standard R GUI) to install the following packages from the CRAN archive: | - Use the installer built into RStudio (or the standard R GUI) to install the following packages from the CRAN archive: | ||
* ''sparsesvd'' | * ''sparsesvd'' | ||
- | * ''iotools'' | + | * ''wordspace'' |
- | * ''tm'' (optional) | + | * optional: ''tm'', ''quanteda'', ''Rtsne'', ''shiny'' |
- | * ''quanteda'' (optional) | + | |
- | * ''Rcpp'' (needed on Linux only) | + | |
- | - Install the ''wordspace'' package itself. It is available from CRAN through the standard installer, but you may be asked to use the latest version available here: | + | |
- | * ''wordspace'' v0.2-0: [[http://wordspace.r-forge.r-project.org/downloads/wordspace_0.2-0.tar.gz|Source/Linux]] – [[http://wordspace.r-forge.r-project.org/downloads/wordspace_0.2-0.tgz|MacOS]] – [[http://wordspace.r-forge.r-project.org/downloads/wordspace_0.2-0.zip|Windows]] | + | |
- | * download a suitable version of the package for your platform | + | |
- | * in the RStudio installer, select “Install from: Package Archive File” | + | |
- During the course, you will be asked to install a further package with additional evaluation tasks (''wordspaceEval'') from a password-protected Web page: | - During the course, you will be asked to install a further package with additional evaluation tasks (''wordspaceEval'') from a password-protected Web page: | ||
* ''wordspaceEval'' v0.1: [[http://www.collocations.de/data/protected/wordspaceEval_0.1.tar.gz|Source/Linux]] – [[http://www.collocations.de/data/protected/wordspaceEval_0.1.tgz|MacOS]] – [[http://www.collocations.de/data/protected/wordspaceEval_0.1.zip|Windows]] (login required) | * ''wordspaceEval'' v0.1: [[http://www.collocations.de/data/protected/wordspaceEval_0.1.tar.gz|Source/Linux]] – [[http://www.collocations.de/data/protected/wordspaceEval_0.1.tgz|MacOS]] – [[http://www.collocations.de/data/protected/wordspaceEval_0.1.zip|Windows]] (login required) | ||
Line 28: | Line 22: | ||
- Download the sample data files listed below | - Download the sample data files listed below | ||
- Download one or more of the pre-compiled DSMs listed below | - Download one or more of the pre-compiled DSMs listed below | ||
+ | |||
+ | ==== Getting the latest & greatest ==== | ||
+ | |||
+ | During the course, you may be asked to install a new version of ''wordspace'' that hasn't been submitted to CRAN yet. In this case, please follow these instructions: | ||
+ | |||
+ | - Use the installer built into RStudio (or the standard R GUI) to install the following packages from the CRAN archive: | ||
+ | * ''sparsesvd'' | ||
+ | * ''iotools'' | ||
+ | * ''Rcpp'' (needed on Linux only) | ||
+ | - Download an appropriate version of the package for your platform: | ||
+ | * ''wordspace'' v0.2-0: [[http://wordspace.r-forge.r-project.org/downloads/wordspace_0.2-0.tar.gz|Source/Linux]] – [[http://wordspace.r-forge.r-project.org/downloads/wordspace_0.2-0.tgz|MacOS]] – [[http://wordspace.r-forge.r-project.org/downloads/wordspace_0.2-0.zip|Windows]] | ||
+ | - In the RStudio installer, select “Install from: Package Archive File” | ||
+ | |||
+ | You can also check the [[http://wordspace.r-forge.r-project.org/|wordspace homepage]] for new releases and installation instructions. | ||
===== Example data sets ===== | ===== Example data sets ===== | ||
Line 39: | Line 47: | ||
===== Pre-compiled DSMs ===== | ===== Pre-compiled DSMs ===== | ||
- | Pre-compiled DSMs for use with the ''wordspace'' package for R. Each model is contained in an ''.rda'' file, and can be loaded into R with the command ''load("model.rda")''. | + | Pre-compiled DSMs for use with the ''wordspace'' package for R. Each model is contained in an ''.rda'' file, which can be loaded into R with the command ''load("model.rda")'' and creates an object with the same name (''model''). |
==== DSMs based on the English Wikipedia ==== | ==== DSMs based on the English Wikipedia ==== | ||
- | These models were compiled from ''WP500'', a 200-million word subset of the Wackypedia corpus comprising the first 500 words of each article. Each model covers a vocabulary of the 50,000 most frequent content words (lemmatized) in the corpus and has at least 50,000 feature dimensions. | + | These models were compiled from ''WP500'', a 200-million word subset of the Wackypedia corpus comprising the first 500 words of each article. Each model covers a vocabulary of the 50,000 most frequent content words (lemmatized) in the corpus and has at least 50,000 feature dimensions. The latent SVD dimensions are based on log-transformed sparse simple-ll scores with L2-normalization. Power scaling with Caron $P = 0$ (i.e. equalization of the latent dimensions) has been applied, but the reduced vectors are not re-normalized. |
- | * dependency-filtered: ''[[http://www.collocations.de/data/WP500_DepFilter_Lemma.rda|WP500_DepFilter_Lemma.rda]]'' (30.4 MB) – 500 latent SVD dimensions: ''[[http://www.collocations.de/data/WP500_DepFilter_Lemma_svd500.rda|WP500_DepFilter_Lemma_svd500.rda]]'' (175.9 MB) | + | * dependency-filtered: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_DepFilter_Lemma.rda|WP500_DepFilter_Lemma.rda]]'' (31.1 MB) – 500 latent SVD dimensions: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_DepFilter_Lemma_svd500.rda|WP500_DepFilter_Lemma_svd500.rda]]'' (179.3 MB) |
- | * dependency-structured: ''[[http://www.collocations.de/data/WP500_DepStruct_Lemma.rda|WP500_DepStruct_Lemma.rda]]'' (30.9 MB) – 500 latent SVD dimensions: ''[[http://www.collocations.de/data/WP500_DepStruct_Lemma_svd500.rda|WP500_DepStruct_Lemma_svd500.rda]]'' (176.8 MB) | + | * dependency-structured: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_DepStruct_Lemma.rda|WP500_DepStruct_Lemma.rda]]'' (31.6 MB) – 500 latent SVD dimensions: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_DepStruct_Lemma_svd500.rda|WP500_DepStruct_Lemma_svd500.rda]]'' (180.3 MB) |
- | * L2/R2 surface span: ''[[http://www.collocations.de/data/WP500_Win2_Lemma.rda|WP500_Win2_Lemma.rda]]'' (50.1 MB) – 500 latent SVD dimensions: ''[[http://www.collocations.de/data/WP500_Win2_Lemma_svd500.rda|WP500_Win2_Lemma_svd500.rda]]'' (173.7 MB) | + | * L2/R2 surface span: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Win2_Lemma.rda|WP500_Win2_Lemma.rda]]'' (51.8 MB) – 500 latent SVD dimensions: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Win2_Lemma_svd500.rda|WP500_Win2_Lemma_svd500.rda]]'' (177.1 MB) |
- | * L5/R5 surface span: ''[[http://www.collocations.de/data/WP500_Win5_Lemma.rda|WP500_Win5_Lemma.rda]]'' (99.3 MB) – 500 latent SVD dimensions: ''[[http://www.collocations.de/data/WP500_Win5_Lemma_svd500.rda|WP500_Win5_Lemma_svd500.rda]]'' (176.5 MB) | + | * L5/R5 surface span: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Win5_Lemma.rda|WP500_Win5_Lemma.rda]]'' (103.9 MB) – 500 latent SVD dimensions: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Win5_Lemma_svd500.rda|WP500_Win5_Lemma_svd500.rda]]'' (179.9 MB) |
- | * L30/R30 surface span: ''[[http://www.collocations.de/data/WP500_Win30_Lemma.rda|WP500_Win30_Lemma.rda]]'' (295.8 MB) – 500 latent SVD dimensions: ''[[http://www.collocations.de/data/WP500_Win30_Lemma_svd500.rda|WP500_Win30_Lemma_svd500.rda]]'' (179.5 MB) | + | * L30/R30 surface span: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Win30_Lemma.rda|WP500_Win30_Lemma.rda]]'' (311.4 MB) – 500 latent SVD dimensions: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Win30_Lemma_svd500.rda|WP500_Win30_Lemma_svd500.rda]]'' (182.8 MB) |
- | * term-document model: ''[[http://www.collocations.de/data/WP500_TermDoc_Lemma.rda|WP500_TermDoc_Lemma.rda]]'' (101.3 MB) – 500 latent SVD dimensions: ''[[http://www.collocations.de/data/WP500_TermDoc_Lemma_svd500.rda|WP500_TermDoc_Lemma_svd500.rda]]'' (158.7 MB) | + | * term-document model: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_TermDoc_Lemma.rda|WP500_TermDoc_Lemma.rda]]'' (105.1 MB) – 500 latent SVD dimensions: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_TermDoc_Lemma_svd500.rda|WP500_TermDoc_Lemma_svd500.rda]]'' (162.5 MB) |
- | * type contexts (L1+R1): ''[[http://www.collocations.de/data/WP500_Ctype_L1R1_Lemma.rda|WP500_Ctype_L1R1_Lemma.rda]]'' (55.1 MB) – 500 latent SVD dimensions: ''[[http://www.collocations.de/data/WP500_Ctype_L1R1_Lemma_svd500.rda|WP500_Ctype_L1R1_Lemma_svd500.rda]]'' (153.9 MB) | + | * type contexts (L1+R1): ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Ctype_L1R1_Lemma.rda|WP500_Ctype_L1R1_Lemma.rda]]'' (55.8 MB) – 500 latent SVD dimensions: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Ctype_L1R1_Lemma_svd500.rda|WP500_Ctype_L1R1_Lemma_svd500.rda]]'' (157.0 MB) |
- | * type contexts (L2+R2 POS tags): ''[[http://www.collocations.de/data/WP500_Ctype_L2R2pos_Lemma.rda|WP500_Ctype_L2R2pos_Lemma.rda]]'' (55.1 MB) – 500 latent SVD dimensions: ''[[http://www.collocations.de/data/WP500_Ctype_L2R2pos_Lemma_svd500.rda|WP500_Ctype_L2R2pos_Lemma_svd500.rda]]'' (172.2 MB) | + | * type contexts (L2+R2): ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Ctype_L2R2_Lemma.rda|WP500_Ctype_L2R2_Lemma.rda]]'' (33.1 MB) – 500 latent SVD dimensions: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Ctype_L2R2_Lemma_svd500.rda|WP500_Ctype_L2R2_Lemma_svd500.rda]]'' (64.3 MB) |
- | * word forms L2/R2: ''[[http://www.collocations.de/data/WP500_Win2_Word.rda|WP500_Win2_Word.rda]]'' (61.6 MB) – 500 latent SVD dimensions: ''[[http://www.collocations.de/data/WP500_Win2_Word_svd500.rda|WP500_Win2_Word_svd500.rda]]'' (182.0 MB) | + | * type contexts (L2+R2 POS tags): ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Ctype_L2R2pos_Lemma.rda|WP500_Ctype_L2R2pos_Lemma.rda]]'' (56.1 MB) – 500 latent SVD dimensions: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Ctype_L2R2pos_Lemma_svd500.rda|WP500_Ctype_L2R2pos_Lemma_svd500.rda]]'' (175.3 MB) |
- | * word forms L2/R2 with non-lemmatized features: ''[[http://www.collocations.de/data/WP500_Win2_Word_WF.rda|WP500_Win2_Word_WF.rda]]'' (65.9 MB) – 500 latent SVD dimensions: ''[[http://www.collocations.de/data/WP500_Win2_Word_WF_svd500.rda|WP500_Win2_Word_WF_svd500.rda]]'' (182.5 MB) | + | * word forms L2/R2: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Win2_Word.rda|WP500_Win2_Word.rda]]'' (63.9 MB) – 500 latent SVD dimensions: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Win2_Word_svd500.rda|WP500_Win2_Word_svd500.rda]]'' (185.5 MB) |
+ | * word forms L2/R2 with non-lemmatized features: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Win2_Word_WF.rda|WP500_Win2_Word_WF.rda]]'' (68.9 MB) – 500 latent SVD dimensions: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/WP500_Win2_Word_WF_svd500.rda|WP500_Win2_Word_WF_svd500.rda]]'' (185.9 MB) | ||
==== Neural word embeddings ==== | ==== Neural word embeddings ==== | ||
Line 60: | Line 69: | ||
Some publicly available pre-trained neural embeddings, converted into ''.rda'' format for use with the ''wordspace'' package. | Some publicly available pre-trained neural embeddings, converted into ''.rda'' format for use with the ''wordspace'' package. | ||
- | * word2vec: ''[[http://www.collocations.de/data/GoogleNews300_wf200k.rda|GoogleNews300_wf200k.rda]]'' (129.2 MiB) | + | * word2vec: ''[[http://corpora.linguistik.uni-erlangen.de/data/wordspace/GoogleNews300_wf200k.rda|GoogleNews300_wf200k.rda]]'' (129.2 MiB) |
===== Web interfaces ===== | ===== Web interfaces ===== | ||
- | * Web interface for several pre-trained [[http://clic.cimec.unitn.it/infomap-query/|Infomap models]] (CIMeC, U Trento) | + | * Web interface for several pre-trained **[[http://clic.cimec.unitn.it/infomap-query/|Infomap models]]** (CIMeC, U Trento) |
+ | * Explore **[[https://corpora.linguistik.uni-erlangen.de/shiny/wordspace/word2vec/|word2vec embeddings]]** (FAU Erlangen-Nürnberg) | ||
+ | * Explore **[[https://corpora.linguistik.uni-erlangen.de/shiny/wordspace/WP500/|DSMs based on Wikipedia]]** (FAU Erlangen-Nürnberg) | ||